RSS    

   Реферат: Распределенные алгоритмы

Утверждение 13.1 Пусть последовательности и  применимы в конфигурации , и пусть ни один процесс не участвует одновременно в  и , тогда  применима в ,  применима в , и .

Доказательство. Следует из повторного применения Теоремы 2.19.                       o

Процесс  имеет входную переменную , доступную только для чтения, и выходной регистр однократной записи  с начальным значением . Входная конфигурация полностью определяется значением  для каждого процесса . Процесс  может принять решение о значении (обычно 1 или 0) записью его в ; начальное значение  не является значением решения. Предполагается, что корректный процесс исполняет бесконечно много событий при законном выполнении; в крайнем случае, процесс всегда может выполнять (возможно пустое) внутреннее событие.

Определение 13.2 t-аварийное законное выполнение - выполнение, в котором по меньшей мере N-t процессов исполняют бесконечно много событий, и каждое сообщение, посылаемое корректному процессу, получается. (Процесс корректен, если исполняет бесконечно много событий.)

Максимальное число сбойных процессов, с которым может справиться алгоритм, называется способностью восстановления алгоритма, и всегда обозначается . В этом разделе демонстрируется невозможность существования асинхронного, детерминированного алгоритма со способностью восстановления 1.

Определение 13.3 1-аварийно-устойчивый алгоритм согласия - алгоритм, удовлетворяющий следующим трем требованиям.

(1)   Завершение. В каждом 1-аварийном законном исполнении, все корректные процессы принимают решение.

(2)   Согласованность. Если в достижимой конфигурации  и  для корректных процессов  и , то .

(3)   Нетривиальность. Для  и для  существуют достижимые конфигурации, в которых для некоторого  .

Для  конфигурация называется v-решенной, если для некоторого  ; конфигурация называется решенной, если она 0-решенная или 1-решенная. В -решенной конфигурации какой-нибудь процесс принял решение . Конфигурация называется v-валентной, если все решенные конфигурации, достижимые из нее, v-решенны. Конфигурация называется бивалентной, если из нее достижимы как 0-валентные, так и  1-валентные конфигурации, и унивалентной, если она либо 1-валентная, либо 0-валентная. В унивалентной конфигурации, хотя никакое решение не было обязательно принято никаким процессом, окончательное решение уже неявно определено.

Конфигурация  -устойчивого протокола называется развилкой, если существует множество  (самое большее) из  процессов и конфигурации  и  такие, что , , и  -валентна. Неформально, - развилка, если подмножество из  процессов может добиться 0-решенности так же, как и 1-решенности. Следующее утверждение формально фиксирует, что в любой момент оставшиеся процессы должна вынести аварию самое большее  процессов.

Утверждение 13.4 Для каждой достижимой конфигурации t-устойчивого алгоритма и каждого подмножества S по меньшей мере из N-t процессов существует решенная конфигурация  такая, что .

Доказательство. Пусть   и  удовлетворяют условию и рассмотрим выполнение, которое достигает конфигурации  и содержит бесконечно много событий в каждом процессе из  впоследствии (и никаких шагов процессов не из ). Это выполнение - t-аварийное законное, и процессы в  корректны; следовательно они достигают решения                                                                                       o

Лемма 13.5 Достижимой развилки не существует.

Доказательство. Пусть    - достижимая конфигурация и  - подмножество самое большее из  процессов.

Пусть  будет дополнением , т.е., . В  по меньшей мере N-t  процессов, следовательно существует решенная конфигурация  такая, что  (Утверждение 13.4). Конфигурация  либо 0-, либо 1-решенная; положим, что она 0-решенная.

Сейчас будет показано, что  ни для какой 1-валентной ; пусть  - любая такая конфигурация, что . Так как шаги в  и  заменяются (Утверждение 13.1), есть конфигурация , которая достижима и из , и из. Так как  - 0-решенна, то и- тоже, что показывает не 1-валентность .     o

13.1.2 Доказательство невозможности

Сначала, используя нетривиальность проблемы, покажем что существует бивалентная начальная конфигурация (Лемма 13.6). Вполедствии будет показано, что начиная с бивалентной конфигурации, каждый доступный шаг можно исполнять без перехода в унивалентную конфигурацию (Лемма 13.7). Этого достаточно, чтобы показать невозможность алгоритмов согласия (Теорема 13.8). В дальнейшем, пусть А - 1-аварийно-устойчивый алгоритм согласия.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.