RSS    

   Вступ до фінансової математики

p align="left">В загальному випадку задачі без short sale (2), (7) явних формул для оптимального портфелю (які залежать тільки від параметрів задачі й не залежать від множників Лагранжа) отримати не вдається і тому тут використовуються численні добре розроблені обчислювальні методи нелінійного програмування.

В 1958 р. Д.Тобін знайшов, що розв'язання задачі вибору оптимального портфеля інвестора спрощується й набуває нових особливостей, якщо врахувати наявність на фінансовому ринку крім ризикових ЦП безризикових (або практично безризикових) ЦП типу урядових облігацій з фіксованим доходом або казначейських векселів і включити безризикове вкладання в подібний актив з часткою яку позначають як, а відповідну ставку доходності як (Tobin D. Liquidity preference as behavior toward risk. - Rev. of Econ. Studies, v.25, №1, p.65-86)))* Тобін Джеймс (н. 1918) - американський вчений в галузі математичної економіки, лауреат нобелевської премії з економіки 1981 року.*

Тому і в теорії і на практиці основною задачею є правильний розподіл капіталу між безризиковими й ризиковими вкладеннями. Позначимо через і сподівану ефективність і дисперсію ефективності всієї ризикової частини портфелю. Ефективність комбінованого вкладення (тобто об'єднаного портфелю з безризикової й ризикової частин з відповідними частинами та ) є випадковою: де - ефективність ризикової частини, а - процентна ставка (ефективність) безризикової частини. Тоді сподіване значення ефективності складає величину

а дисперсія визначається тільки ризиковою частиною й дорівнює

. Тому і

Це разом з (*) призводить до рівності

тобто зв'язок між і є лінійним (див рис. 2) (звичайно вважається, що ).

Якщо весь капітал вкладається у безризикові ЦП, то то ефективність є , а ризик є нульовим; якщо ж весь капітал вкладається у ризикові ЦП то сподівана ефективність складає , а ризик є Довільному проміжному рішенню відповідає одна з точок на відрізку прямої, що пов'язує граничні, прості рішення. Однак, якщо можливо брати безризикові папери в борг , то є досяжною будь-яка сподівана ефективність, що супроводжується відповідно зростаючим ризиком. Теорія тільки вказує, які будуть наслідки рішення інвестора.

Задача Тобіна вибору оптимального портфелю має вигляд:

Функція Лагранжа задачі Тобіна (10) дорівнює

де і - множники Лагранжа. Умови екстремуму

і

призводять до системи лінійних рівнянь для і і : , звідки

Виключаючи з обмежень задачі (10) отримуємо, що або . Підстановка сюди з (11) дає рівняння для , з якого маємо явну формулу для

що дозволяє перетворити (11) в явний вираз розв'язку задачі (10)

де для скорочення записів введено позначення

Істотньо, що величина входить тільки до скалярного множника при Отже, структура ризикових вкладень не залежить від :

Мінімальна дисперсія портфелю має вигляд

Звідси випливає лінійний зв'язок сподіваної ефективності отриманого портфелю та його середньоквадратичного відхилення (ризику):

При оптимальний портфель складається тільки з ризикових ЦП, а, отже, повинен бути оптимальним і серед всіх можливих варіантів тільки ризикових ЦП. Однак мінімальні дисперсії всіх портфелей тільки з ризиковими ЦП для різних даються розв'язанням задачі Марковітца (2). Таким чином точка на прямій (16), що відповідає лежить й на кривій . Це єдина загальна точка цих ліній через єдиність оптимального портфелю ризикових ЦП, і тому пряма (16) дотикається до кривої саме в цій точці (рис.3). Тими ж самими властивостями характеризується й розв'язок задачі Тобіна при додаткових обмеженнях невід'ємності змінних (випадок заборони short sale). В цьому разі, подібно до відповідної задачі Марковітца, розв'язок може бути представлено у формі

,

де - множники, що задовольняють разом з компонентами умовам доповнювальної нежорсткості (9). Ненульові визначаються спільно з ненульовими з лінійної системи рівнянь, права частина якої пропорційна .

Звідси випливає, що й пропорційний , а, отже, структура ризикових вкладень не повинна залежати від цього скалярного множника.

Хоч гіпотеза Тобіна про можливість чисто безризикових вкладень практично некоректна, можливо довести, що при наявності слаборизикових вкладень розв'язок задачі Марковітца (2) є близьким до розв'язку задачі Тобіна (10), побудованої на базі нехтування слабким ризиком. Тим самим структура сильноризикових вкладень майже не залежить від схильності інвестору до ризику.

5.3 Ризик портфелю і внесок кожного активу в сподівану ефективність портфелю

Серед економістів поширена думка, що або є найбільш розумною мірою ризику портфелю ЦП. Але вона може бути запереченою.

Приклад 1. Нехай для двох видів акцій 1 і 2 але дійсні ефективності залежать від випадкових ситуацій “а” (що має ймовірність 0,2) і “б” (що має ймовірність 0,8). Курс акцій 1 в ситуації “а” зростає на 5% і при “б” - на 1,25%; відповідні величини для акцій 2 складають -1% і 2,75%. Відповідні сподівані ефективності і співпадають:

, .

Дисперсії також співпадають

.

Нехай інвестор взяв гроші у борг під процент, рівний 1,5. Він нижчий ніж сподівана ефективність і тому ці дії є розумними. Однак, якщо інвестор вкладе гроші в акції 1 і відбудеться ситуація “а” то він виграє 3,5%, а при вкладі в акції 2 він збанкрутує. Коли ж відбудеться ситуація “б” і гроші вкладені в акції 1, інвестор збанкрутує, а коли гроші вкладені в акції 2, то він буде у виграшу. Ситуації мають різну ймовірність і тому рішення інвестора не є рівнозначними щодо ризику банкрутства: при вкладі в акції 1 він збанкрутує з ймовірністю 0,8, а при вкладі в акції 2 - з ймовірністю 0,2.

Отже, при рівності сподіваних ефективностей, дисперсій і початкового капіталу ризик банкрутства може бути різним!

В цілому, хоч завдання дисперсії не повністю характеризує ризик, але воно дозволяє зробити оцінку ризику і виявити граничні шанси інвестора через використання відомої нерівності Чебишева. В застосуванні до випадкової величини за нерівністю Чебишева

Припустимо, що інвестиція робиться за рахунок позики під процентну ставку при заставі майна. Яка ймовірність інвестору не повернути боргу та втратити майно (напр. нерухомість)? Це ймовірність події так що ймовірність банкрутства інвестора є

Звичайно при цьому припускається виконання умови розумності такого вкладення “під кредит”, , і оцінка ймовірності банкрутства має сенс при що було невиконано в попередньому прикладі).

Приклад 2. Знайти умову того, щоби шанс банкрутства був би не більше одного з дев'яти.

З попереднього для цього досить виконання умови або (остання нерівність відома в прикладній теорії ймовірностей як “правило 3-х сигма”).

Розглянемо ситуацію, коли інвестор вкладає в акції тільки частину свого капіталу, залишаючи іншу частину на заощадження під процентну ставку Яка тоді буде оцінка ймовірності банкрутства?

Якщо - початковий капітал, - частина його, що йде на заощадження, то банкрутство можливе, якщо

або ж

Оцінка за Чебишевим дає шанс банкрутства менший ніж при умові, що

або

Ясно, що гра на свій капітал значно безпечніша. Навіть при вкладенні всього капіталу досить виконати умову (звичайно, якщо інвестора задовольняє рівень гарантії).

В цілому оцінка Чебишева, як правило, передбачає великий запас. Наприклад, якщо зарані відомо, що коливання в обидва боки від рівноймовірні, то оцінка шансів на банкрутство зменшується майже в 5 разів: замість 1 випадку з 9 гарантується, що банкруцтво відбудеться не частіше ніж в 1 випадку з 40. Взагалі ймовірність банкрутства теж не є абсолютно об'єктивною мірою ризику економічного агента. Використовуються й інші розумні міри ризику, зокрема величини типу сподіваного значення перевищення втрат над капіталом, який є у розпорядженні агента.

Одним з найбільш загальних підходів до оцінки міри ризику є використання функцій корисності , концепція яких була винайдена російським академіком Д.Бернуллі в 1738 році при розв'язанні так званого “петербургського парадоксу” в одній задачі про банкрутство гравця (див. Напр. [9], стор. 34-35), і стала одним з головних інструментів теорії прийняття рішень, зокрема, в економіці й фінансах. Гладка функція корисності багатства (капіталу) економічного агента визначалась Д.Бернулі як “моральна вартість” суми грошей , що повинна мати властивості

Зокрема, у якості показників (мір) ризику , пов'язаного з випадковою ефективністю активу, можливо використовувати величини де - та чи інша функція корисності, вид якої залежить від особливостей конкретної ситуації.

Наприклад, якщо , то тоді - сподівана середня ефективність активу, а при де - деяке задане число маємо що , тобто міра враховує і сподівання і дисперсію випадкової ефективності активу. Ймовірність уникнення банкрутства при початковому капіталі описується за допомогою спеціальної функції корисності при і при

Застосовуючи різні функції корисності, можна описати різноманітні варіанти випадково-ризикової ситуації та відповідні міри її ризику. Описана вище квадратична функція корисності в теорії ринку ЦП має таку інтерпретацію: інвестор вважає корисним для себе збільшення значення ефективності, але уникає відхилення цієї ефективності від сподіваного значення. Чим більше , тим тенденція уникання ризику є більшою. Застосування квадратичної функції корисності є спробою об'єднання двох критеріїв: сподіваного значення й дисперсії.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.