RSS    

   Реферат: Литература - Другое (книга по генетике)

p>метод позволяет изолировать фрагменты ДНК, отстоящие в гено-

ме друг от друга на сотни тысяч нуклеотидов (длина прыжка),

не изолируя при этом все промежуточные последовательности

ДНК (Collins, Weissman, 1984). Как видно на представленной

схеме (Рис.3.7), прыжки начинаются со стартового зонда, то

есть с последовательности, гибридизующейся со сцепленным с

геном ДНК-маркером. Предварительно геномная ДНК переварива-

ется редкощепящей рестриктазой, в результате чего образуются

большие фрагменты ДНК, соответствующие по длине одному прыж-

ку. Затем, эти фрагменты переводятся в кольцевую форму за

счет искусственного присоединения к их концам небольшого

маркерного гена. При этом концы рестрикционных фрагментов

сближаются. Кольцевые молекулы ДНК разрезают среднещепящими

рестриктазами и из пула относительно небольших фрагментов

ДНК отбирают те, которые содержат маркерный ген, а, следова-

тельно, и окружающие его концевые участки исходных крупных

фрагментов. Отобранные последовательности клонируют в фаго-

вых или космидных векторах, получая библиотеку генов конце-

вых участков. Затем в этой библиотеке проводят скрининг кло-

нов, содержащих стартовый зонд. Только в этих клонах компле-

ментарные зонду последовательности соединены маркерным геном

с последовательностями ДНК, отстоящими от стартового участка

поиска на длину прыжка. При необходимости промежуточные сег-

менты ДНК также могут быть клонированы с использованием ме-

тода скользящего зондирования.

Остановимся теперь на тех критериях, по которым можно

отличить сегменты ДНК, являющиеся частями генов, от любых

других последовательностей (Рис.3.7.) (Lindsay, Bird, 1987;

Rommens et al., 1989; Wicking, Williamson, 1991; Collins,

1992). Условно эти критерии могут быть разделены на три

группы. В первой группе исследуют структурные особенности

генных последовательностей. Вторая группа критериев основана

на поиске функциональных участков генов. В третьем случае

анализируют характер нуклеотидных последовательностей тести-

руемых фрагментов ДНК. Диагностику структурных участков ге-

нов осуществляют путем гибридизации с ДНК-зондами или прямым

скринированием кДНК-овых библиотек. Функциональная диаг-

ностика генов включает улавливание экзонов (exon trapping),

промоторных участков, поли-A сигнальных последовательностей,

а также перенос генов в иные конструкции и идентификацию в

них соответствующих транскриптов. И, наконец, поиск генов

может быть осуществлен путем прямого секвенирования крупных

фрагментов ДНК с последующим компьютерным анализом нуклео-

тидной последовательности и сопоставлением её с присутствую-

щими в базах данных идентифицированными генами других видов

живых существ.

Как уже отмечено ранее, кодирующие области генов,

представленные в геноме уникальными последовательностями,

достаточно консервативны в процессе эволюции. Существует

высокий процент гомологии в структуре ДНК между одинаковыми

генами у разных видов млекопитающих. На этом факте основан,

так называемый зоо-блот - скрининг клонированных последова-

тельностей, не содержащих повторов, но дающих перекрестную

гибридизацию с геномной ДНК, выделенной из разных видов жи-

вотных - приматов, сельскохозяйственных животных, грызунов,

птиц, рептилий. Клоны, содержащие консервативные последова-

тельности, подвергают дальнейшему анализу на присутствие в

инсертированных фрагментах ДНК CpG островков, часто маркиру-

ющих 5'-фланкирующие области генов позвоночных, особенно ге-

нов домашнего хозяйства ( см.Главу II,2.4), и исследуют на-

личие открытых рамок считывания -ORF (open reading frames).

Дальнейший поиск генов в более узком интервале может быть

осуществлен с помощью компьютерного анализа соответствующей

нуклеотидной последовательности ДНК. Кроме того, все клони-

рованные ДНК из этого интервала могут быть сразу использова-

ны для анализа РНК-транскриптов (Iannuzzi, Collins, 1990).

Важным доказательством принадлежности клонированной ДНК

гену является идентификация гомологичных РНК транскриптов в

тканях, где можно предполагать экспрессию этого гена. С этой

целью проводят гибридизацию уже отобранных по первым двум

критериям клонов ДНК с тотальной мРНК, выделенной из этих

тканей, а также скринируют соответствующие кДНК-овые библио-

теки. Для генов наследственных заболеваний с неизвестным

первичным биохимическим дефектом библиотеки конструируют из

пораженных органов и тканей. При обнаружении последователь-

ностей кДНК, гибридизующихся с геномными зондами, их, в свою

очередь, используют для зондирования библиотеки и выявления

всех клонов с перекрывающимися последовательностями кДНК. К

сожалению, для генов с низким уровнем экспрессии гибридиза-

ция может не дать положительных результатов.

Выделенные клоны, удовлетворяющие перечисленным крите-

риям, с большой вероятностью содержат последовательности ДНК,

являющиеся частями гена. Однако, всегда существует опасность

выбора какого-то другого гена (или псевдогена), локализован-

ного в той же области ДНК. Поэтому требуются дополнительные

доказательства идентичности выбранной последовательности ДНК

специфическому гену. Такие доказательства могут быть получе-

ны, например, при определении нуклеотидной последователь-

ности кДНК и сопоставлении ее с аминокислотной последова-

тельностью кодируемого этим геном белка. Веским доказа-

тельством в пользу правильности проведенной идентификации

гена может быть обнаружение мутантных вариантов аллелей в

изолированных последовательностях ДНК у больных, страдающих

соответствующим наследственным заболеванием. Так, например,

при идентификации гена муковисцидоза, у 70% больных в клони-

руемой кДНК последовательности была обнаружена однотипная

мутация - делеция трех нуклеотидов - delF508. Наконец, реша-

ющим аргументом правильности идентификации нужного гена яв-

ляется успешно осуществленная с его помощью генокоррекция

первичного биохимического дефекта, выполненная на соот-

ветствующих культурах мутантных клеток, или получение стой-

кого терапевтического эффекта у трансгенных животных - био-

логических моделей данного наследственного заболевания.

Определение размера молекул мРНК, гибридизующихся с ге-

номными клонами, дает оценку суммарной величины гена. Эта

оценка имеет важное значение для реконструирования полнораз-

мерной кДНК. Её клонирование, по-сути, означает идентификаию

гена, так как позволяет определить его границы в геномной

ДНК, охарактеризовать его экзонно-интронную структуру и ре-

гуляторные элементы. Зная первичную нуклеотидную последова-

тельность кДНК, можно с уверенностью прогнозировать амино-

кислотную последовательность соответствующего белка и таким

образом определить первичное биохимическое звено в патогене-

зе соответствующего наследственного заболевания.

Описанный способ изучения молекулярных и биохимических

основ наследственных заболеваний получил название обратной

генетики, а сам процесс в отличие от традиционного пути от

белка к гену, так называемого функционального клонирования,

был назван позиционным клонированием, тем более, что термин

обратной генетики уже использовался ранее для обозначения

метода анализа функции гена путем направленного введения в

него мутаций (Collins, 1992).

Возможность использования функционального клонирования

зависит от доступности информации о белковом продукте и/или

о функции соответствующего гена. Для подавляющего боль-

шинства моногенных болезней определение первичного биохими-

ческого дефекта представляет собой очень трудную задачу

из-за недостаточного понимания функционирования огромного

числа клеточных ферментов, сложностей их взаимодействия,

низких концентраций, отсутствия эффективных методов выделе-

ния и очистки а, зачастую, даже из-за отсутствия сведений о

клетках - мишенях, в которых следует искать первичный биохи-

мический дефект. Поэтому на фоне стремительного роста данных

о структуре генома чеовека и, прежде всего, о насыщенности

генами и анонимными ДНК маркерами отдельных хромосом и их

сегментов, реальные соотошения функционального и позиционно-

го клонирования в идентификации генов, ответственных за

наследственные заболевания, быстро меняются в сторону бе-

зусловного доминирования последнего.

Успех позиционного клонирования определяется возмож-

ностями картирования гена, при этом функция гена исследуется

уже после его идентификации и клонирования. На рис. 3.8

представлена общая схема позиционного клонирования, за-

имствованная из работы Коллинза (Collins, 1992). Обычно, для

нахождения положения неизвестного гена на карте сцепления

используют 100 - 200 полиморфных маркеров. После обнаружения

хромосомной принадлежности картируемого гена более

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.