Реферат: Литература - Другое (книга по генетике)
p>составленной
на основе
гипервариабильных
минисателлитов
вгеномную ДНК приводит к более, чем 10-кратному увеличению
числа реципрокных обменов, причем степень этого влияния об-
ратно пропорциональна расстоянию между STR и сайтом рекомби-
нации (Wahls et al., 1990). Вместе с тем, многие авторы об-
ращают внимание на достаточно высокую стабильность миниса-
теллитных аллелей, что позволяет их широко использовать как
для генетического маркирования, так и для популяционных
исследований и идентификации личности методом ДНК-фингерп-
ринта (Decorte,Cassiman 1993; Edwards et al.,1991; Ива-
нов,1989).
Для многих мутаций, локализованных в некодирующих
частях генома, характерны высокие уровни популяционного по-
лиморфизма. Необходимо, однако, подчеркнуть, что эта измен-
чивость не затрагивает общей структуры генома, определяющей
различия между видами. Более того, сопосталение первичных
нуклеотидных последовательностей сравнительно протяженных
секвенированных участков ДНК (области Т-рецепторных генов
длиной около 100 кб) обнаружило сохранение высокой степени
гомологии не только в кодирующих, но и, что особенно удиви-
тельно, в некодирующих частях этих последовательностей. Если
учесть, что эволюционно человек и мышь разделены почти 80
миллионами лет эволюции, эти данные рассматриваются как сви-
детельство функциональной значимости некодирующих частей
этих генов По-видимому, далеко не всякие мутации в некодиру-
ющих районах ДНК являются нейтральными и в определенных слу-
чаях они могут отрицательно влиять на жизнеспособность. К
сожалению, в настоящее время ничего или почти ничего неиз-
вестно о функциях некодирующих ДНК-последовательностей.
Высказывалось даже предположение, что их единственной функ-
цией является репликация. Отсюда возникло представление об
"эгоистической" или "паразитической" ДНК. Конечно, полностью
исключить наличие подобных паразитических последователь-
ностей ДНК в любом геноме нельзя. Тем ни менее, представля-
ется маловероятным, что значительная часть генома человека,
также как и других видов, относится к эгоистической ДНК.
По-видимому, наши знания о роли некодирующей или, как еще
говорят, "избыточной" ДНК все еще явно недостаточны. Ста-
бильность структурной организации генома в пределах вида
свидетельствует скорее о важной эволюционной роли некодирую-
щих ДНК-последовательностей и об их участии в процессах он-
тогенеза. Можно предполагать, что ответ на этот интригующий
вопрос в какой-то мере будет получен при расшифровке и срав-
нении полной первичной нуклеотидной последовательности гено-
мов у животных разных видов и, прежде всего, у человека и
мыши, где прогресс в секвенировании геномной ДНК особенно
значителен (см.Главу III). Уместно заметить, что проведенный
недавно компьютерный анализ генома человека позволяет пред-
полагать наличие в его некодирующей части особого, пока еще
непонятного генетического кода, смысл и значение которого
остаются загадочными ( ?).
Раздел 2.7 Мобильность генома, облигатные и факульта-
тивные элементы генома.
До сих пор мы рассматривали основные структурные эле-
менты генома человека, положение которых в соответствии с
представлениями классической генетики достаточно постоянно.
Начиная с 50-х годов стали накапливаться данные о существо-
вании большого числа мобильных генетических элементов,
присутствие которых в геноме не является обязательным, а их
топография и количество может варьировать в различных клет-
ках, тканях и у разных индивидуумов (McClintock, 1984; Berg,
Howe, 1989). У прокариот такие элементы получили название
транспозонов. Их структура и функции достаточно хорошо изу-
чены. Отличительной особенностью мобильных элементов явля-
ется способность существовать как в интегрированном с хро-
мосомой виде, так и в виде отдельных макромолекул - эписом,
плазмид, вирусных частиц. Почти 50 различных семейств мо-
бильных элементов описано у дрозофилы . Вместе эти последо-
вательности составляют около 12% гаплоидного набора
(Golubovsky, 1995). В геноме млекопитающих содержится до 50
000 диспергированных копий ретропозона LINE размером около
6500 пар основанийю. Семейство Alu- повторов, содержащее от
300 до 500 тысяч копий, также относится к числу мобильных
элементов генома (Сharlesworth et al.,1994). Явление лизоге-
нии, то есть присутствие вирусных последовательностей в
составе ДНК человека и наличие фрагментов генов человека в
вирусных геномах, служит одним из примеров мобильности ДНК и
возможности "горизонтальной" передачи наследственно закреп-
ленных признаков между видами. Мобильные ДНК, как правило,
относятся к факультативным элементам. Как уже отмечалось, не
существует четких границ между облигатными и факультативными
элементами генома, так как возможен взаимный переход от од-
ного состояния к другому. Структурные локусы или сегменты
хромосом могут трансформироваться в факультативные элементы
за счет амплификации, интеграции в мобильные элементы или
путем образования цитоплазматических ретротранскриптов. Об-
ратный переход от факультативных элементов к облигатным осу-
ществляется посредством инсерций, транспозон-индуцированных
перестроек и обратной транскрипции.
Факультативные элементы существуют в геноме как популя-
ции информативных макромолекул. Изменения, возникающие в них
под воздействием внешних факторов, носят совершенно иной ха-
рактер по сравнению с классическими мутациями в структурных
локусах. Для описания изменений в факультативных элементах
предложен термин " вариации" (Голубовский, 1985). Этот тер-
мин впервые использован Жакобом и Воллманом для описания по-
ведения эписом (Jacob, Wollman, 1961). Вариации могут приво-
дить к изменениям на генотипическом уровне, то есть к мута-
циям, вследствие простого перемещения факультативных элемен-
тов или сдвига в соотношении между факультативными и обли-
гатными элементами. В этих случаях мутации встречаются од-
новременно у многих индивидуумов. Подобные изменения упоря-
дочены, могут происходить сразу во многих локусах и отлича-
ются высокой сайт-специфичностью. Локализация структурных
перестроек, возникающих в результате вариаций, предопределе-
на первоначальной топографией факультативных элементов на
хромосомах. И наконец, сами вариации могут быть индуцированы
обычными "не-мутагенными" факторами, такими как температура
или межлинейные кроссы (Golubovsky, 1995). Факультативные
элементы могут рассматриваться как оперативная память гено-
ма, так как во многих случаях спонтанное возникновение мута-
ций в облигатных элементах опосредовано их активацией. Счи-
тается, в частности, что инсерционный мутагенез является
причиной спонтанного возникновения 70% видимых мутаций в
природных популяциях дрозофилы. Однако, у человека пока за-
регистрированы лишь единичные случаи возникновения мутаций
вследствие перемещения мобильных элементов генома (Vidaud et
al.,1993).
Раздел 2.8 Изохоры, метилирование, гиперчувствительные
сайты.
Перечисленные выше компоненты генома не случайным обра-
зом связаны с последовательностями нуклеотидов. И в этом
смысле можно говорить о существовании в геноме человека
структур более высокого иерархического порядка. Примером
служат изохоры - длинные, в среднем, свыше 300 кб сегменты
ДНК, гомогенные по композиции оснований или по GC-уровням.
62% генома состоит из GC-бедных изохор и в них локализовано
около 34% генов, 31% генома представлен GC-богатыми изохора-
ми, содержащими 38% генов, и в 3% изохор, обогащенных
GC-последовательностями (так называемых H3 изохор), нахо-
дится 28% генов (Mouchiroud et al., 1991; Saссone et al.,
1993). Таким образом, существуют относительно небольшие
участки ДНК, в которых плотность генов в 10 -20 раз выше,
чем в остальных последовательностях.
Другой общей чертой генома человека является то, что in
vivo значительная доля цитозиновых остатков в молекуле ДНК
метилирована, то-есть находится в форме 5-метилдезоксицити-
дина. Экспериментальное изучение характера метилирования
основано на сопоставлении рестрикционных фрагметов, образую-
щихся после обработки ДНК эндонуклеазами, для которых сайты
узнавания одинаковы и содержат в своем составе цитозин, но
действуют эти ферменты по-разному, в зависимости от того,
находится ли это основание в метилированном состоянии или
нет. В частности, рестриктазы - Msp1 и Hpa11, узнают после-
довательность CCGG, но в отличие от Msp1, Hpa11 не расщепля-
ет ДНК в тех сайтах, где внутренний CpG динуклеотид метили-
рован. Некоторые сегменты генома, особенно это относится к
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70