Реферат: Литература - Другое (книга по генетике)
p>этого
могут быть
выбраны два
различных
подхода. В первомслучае изолируют ядра и в качестве транскрипционной матрицы
используют неповрежденный хроматин. Синтез РНК проводят с
добавлением всех необходимых реагентов и, в частности, три-
фосфатов, в один из которых (обычно в урацил) вводят ради-
оактивную метку. При этом вновь синтезированные молекулы РНК
оказываются мечеными. Выбор специфических молекул РНК прово-
дят путем ДНК-РНК гибридизации, однако, в отличие от ранее
описанных методов анализа мРНК, используют немеченые
кДНК-зонды, предварительно нанесенные на фильтры. Большим
достоинством этой транскрипционной системы является ее
максимальная приближенность к естественным процессам. При
втором подходе транскрипция ведется с клонированных фрагмен-
тов ДНК, а ядерные экстракты служат источником ферментов и
регуляторных белков.
Раздел 6.3 Анализ трансляции, ДНК-экспрессионные систе-
мы.
Традиционные методы анализа регуляции трансляции и
посттрансляционных модификаций белков основаны на использо-
вании модельных систем, представляющих собой цитоплазмати-
ческие свободные от мРНК безядерные экстракты клеток, содер-
жащие рибосомальный аппарат, транспортные РНК, набор амино-
кислот и ферментов, необходимых для трансляции и процессинга
белков (Хэймс, Хиггинс, 1987; Клеменс, 1987 ). После добав-
ления к такой системе специфической мРНК происходит синтез
соответствующей полипептидной цепи in vitro. При введении
меченых аминокислот в систему вновь синтезированные белки
после электрофоретической очистки могут быть идентифицирова-
ны путем радиоавтографии либо иммунологическими методами,
при наличии соответствующих антител (Клеменс, 1987). Однако,
для значительного числа моногенных наследственных заболева-
ний первичный биохимический дефект неизвестен, а следова-
тельно, не идентифицированы и мРНК транскрипты. Биохими-
ческое изучение многих белков затруднено из-за их минорного
содержания и отсутствия эффективных методов выделения и
очистки. Последнее обстоятельство в значительной мере от-
носится к нерасворимым белкам, ассоциированным с мембранными
структурами клеток.
ДНК-экспрессионные системы, то есть клеточные культу-
ры, синтезирующие чужеродные белки, являются очень мощным
средством анализа структуры, функции и синтеза белков
(Sambrook et al., 1989). Такие системы конструируют на осно-
ве экспрессионных векторов, содержащих в своем составе силь-
ные промоторы и регуляторные последовательности, обеспечива-
ющие высокий, но в то же время регулируемый уровень
экспрессии. Кодирующие последовательности чужеродных генов
инсертируют (вставляют) с помощью соответствующих генно-ин-
женерных приемов в область действия этих промоторов. Конеч-
но, такие системы должны содержать и трансляционные сигналы,
в частности, сайты связывания рибосом, обеспечивающие работу
рибосомального аппарата клеток хозяина. В некоторых случаях
экспрессионные векторы вводят в мутантные по протеазным ге-
нам клеточные культуры, с тем чтобы предотвратить деградацию
чужеродных белков в клетках.
Существует три типа экспрессионных систем - бактериаль-
ные, сконструированные обычно на основе E.coli, дрожжевые и
экспрессионные культуры клеток млекопитающих. Каждая из этих
систем имеет свои преимущества и недостатки. Бактериальные
системы наиболее удобны для клонирования, обладают высоким
уровнем экспрессии (до 1-2 грамм белка на литр культуры) и
их используют, обычно, для производства большого количества
чистого белка, необходимого для получения антител или для
фармацевтических целей. Удобны также эти системы для введе-
ния изменений в различные районы полипептидной цепи путем
сайт-направленного мутагенеза в нуклеотидной последователь-
ности чужеродной ДНК. Получение и исследование таких "му-
тантных" белков очень важно для оценки функциональной значи-
мости различных участков белка.
Уровень экспрессии чужеродных белков в дрожжевых клет-
ках вдвое, а в клетках млекопитающих в десятки раз ниже, чем
в бактериальных. Однако, в бактериальных клетках отсутствуют
ферментативные системы, обеспечивающие процессинг эукариоти-
ческих белков. Поэтому эукариотические системы удобнее
использовать для изучения посттрансляционных модификаций
белка - гликозилирования, то есть присоединения к полипеп-
тидной цепи углеводных остатков; скручивания белка с образо-
ванием третичной структуры, часто, за счет возникновения
дисульфидных связей; и N-концевых модификаций, стабилизирую-
щих структуру белка. В ДНК-экспрессионных системах может
быть синтезировано достаточно много белка, чтобы получить
его в кристаллической форме и исследовать пространственную
структуру и функциональное назначение отдельных доменов
(Хэймс, Хиггинс, 1987).
Использование экспрессионных библиотек для изоляции ко-
дирующих последовательностей гена рассматривалось ранее (см.
Глава II). После секвенирования кДНК можно, исходя из гене-
тического кода, прогрозировать аминокислотный состав белка и
произвести компьюторный поиск в банке данных гомологичных
последовательностей в составе белков с уже известной струк-
турой и функциями. Выявление родственных белков, близких по
своему полипептидному составу, значительно ускоряет и облег
чает дальнейший молекулярный анализ функционирования иссле-
дуемого белка в клетке. Аминокислотная последовательность
белка позволяет прогнозировать его третичную структуру,
идентифицировать домены, оценивать функциональную значимость
целого белка и отдельных его компонентов. Не менее важным
практическим следствием этих данных является также возмож-
ность получения антител к строго специфичным участкам бел-
ка. Для этого могут быть использованы два подхода - биохими-
ческий и молекулярно-генетический. В первом случае для имму-
низации используют искусственно синтезированные полипептиды,
которые пришивают к белковой молекуле-носителю (гаптену).
Размеры таких полипептидов, обычно, не превышают 30 амино-
кислот - они не могут быть очень большими из-за высокой сто-
имости и трудоемкости синтеза длинных молекул. При втором
подходе экзонные участки гена инсертируют в экспрессионный
вектор в область, кодирующиую селектируемый белок. В резуль-
тате экспрессии такой конструкции получают слитый белок, в
котором наряду с аминокислотной последовательностью селекти-
руемого маркера содержится определенный фрагмент исследуемо-
го белка. Эту химерную молекулу и используют для иммунизации
животных и получения моновалентных или моноклональных анти-
тел. При наличии антител могут быть применены различные им-
мунологические подхооды для анализа тканеспецифического и
внутриклеточного распределения белка, исследования его моди-
фикаций, а также для получения нативного белка в препаратив-
ных количествах.
Cледующим шагом на пути анализа молекулярных механизмов
регуляции экспрессии гена является идентификация тех наруше-
ний в структуре, локализации и активности молекул мРНК и
белка, которые возникают вследствие генетических мутаций. Мы
уже упоминали об огромном значении культур мутантных клеток
для подобных исследований. Однако, многие патологические
процессы, протекающие в организме больного, не могут быть
исследованы in vitro. С другой стороны, возможности получе-
ния необходимого количества клеток и тканей пациента и испы-
тания in vivo различных схем лечения значительно ограничены.
Поэтому для многих наследственных болезней эффективность
изучения основ патогенеза существенным образом зависит от
наличия адекватных биологических моделей. Способы конструи-
рования таких моделей подробно изложены в Главе YIII.
ГЛАВА II.
ГЕНОМ ЧЕЛОВЕКА, СТРУКТУРА ГЕНОВ.
Раздел 2.1. Определение генома и его основных элемен-
тов.
Термин геном используется для обозначения полной гене-
тической системы клетки, определяющей характер онтогенети-
ческого развития организма и наследственную передачу в ряду
поколений всех его структурных и функциональных признаков.
Понятие генома может быть применено к таксономической груп-
пе, виду, отдельной особи, клетке, микроорганизму или ви-
русу. Так, можно говорить о структуре генома эукариот и про-
кариот, сравнивать геномы разных видов, изучать особенности
строения генома у конкретных индивидуумов или следить за из-
менениями, происходящими в геноме специфических клеток в
процессе их онтогенетической дифференцировки. Часто геном
определяется как генетическая информация, заключенная в мо-
лекулах ДНК одной клетки. Однако, такие факты, как
отсутствие связи между количеством ДНК в расчете на гаплоид-
ный геном и таксономическим статусом видов, а также много-
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70