RSS    

   Реферат: Литература - Другое (книга по генетике)

p>транспозоноподобных повторяющихся последовательностей.

Удельный вес мобильных (транспозонподобных) элементов типа

Alu и Line повторов (см. Главу 2) в возникновении генных му-

таций до конца не выяснен. Имеются единичные наблюдения о

реальном перемещнии этих элементов по типу конверсии и их

интеграции в структурные гены аденозиндезаминазы, аполипоп-

ротеина С, факторов VIII и IX свертывания крови, кальмодули-

на (Vidaud et al.,1993).


Раздел 5.4 Механизмы поддержания и распространения му-

таций в популяциях.


Частоты и характер распределения мутаций в популяциях

зависят от многих факторов, главными из которых являются

частоты мутагенеза и давление естественного отбора. Значи-

тельное влияние на этот процесс оказывают также структурные

особенности популяций, такие как размеры, степень географи-

ческой и этнической изолированности, величина инбридинга,

характер миграции населения.

Для всех мутаций, возникающих за счет повышенного уров-

ня спонтанного мутагенеза, характерны следующие особенности

- неслучайный характер внутригенной локализации мутаций,

сходство типов нарушений при отсутствии полной молекулярной

идентичности между ними. В отличие от спонтанных мутаций,

вызыванных эндогенными причинами, для мутаций, индуцирован-

ных действием неблагоприятных факторов внешней среды, про-

мышленными и сельскохозяйственными вредностями, ионизирующим

облучением, химическими агентами и прочим, специфики в типах

мутаций и в характере их локализации не наблюдается. В попу-

ляциях, находящихся в области действия таких неблагоприятных

факторов, будет повышена частота мутаций в различных генах,

однако спектр индуцированных мутаций будет достаточно разно-

образным.

Рассмотрим теперь влияние отбора на процесс поддержа-

ния и распространения мутаций в популяциях. Многие гены мо-

ногенных наследственных заболеваний рецессивны, то есть му-

тации в них в гетерозиготном состоянии не оказывают вредного

влияния на жизнеспособность. Поэтому после возникновения му-

тация может распространяться в популяции до определенной

концентрации, практически не подвергаясь элиминирующему

действию естественного отбора. В дальнейшем частота этой му-

тации достигнет равновесного состояния и не будет повышаться

за счет выщепления гомозиготных особей, жизнеспособность и

репродуктивные качества которых резко снижены. При этом ско-

рость элиминации мутации из популяции резко замедляется при

снижении ее частоты и, практически, после возникновения му-

тация может сохраняться в популяции на протяжении многих

десятков и даже сотен поколений. Различные мутации могут

случайным образом получить большее распространение в изоли-

рованных популяциях или среди групп населения, отличающихся

повышенным уровнем инбридинга. В целом, при отсутствии дав-

ления отбора по отношению к гетерозиготным особям общая кон-

центрация мутантных аллелей в популяции определяется часто-

той их спонтанного возникновения, при этом пул мутаций будет

состоять из большого количества разнообразных аллелей, каж-

дый из которых будет представлен редкими или даже единичными

случаями в различных популяциях.

Однако, специфические мутации могут получить значи-

тельно более широкое распространение в тех случаях, когда

гетерозиготные особи имеют какие-либо селективные преиму-

щества. Таким эффектом может обладать сама мутация, но более

вероятна возможность неравновесности по сцеплению между этой

мутацией и селективными аллелями другого локуса. Гетерозиго-

ты могут получить преимущество при изменении условий окружа-

ющей среды, в каких -то экстремальных ситуациях или среди

определенных групп населения. Так например, мутации, повыша-

ющие устойчивость организма к действию инфекционных агентов,

могут получить широкое распространение в период массовых

эпидемий. Одновременно повысится частота всех аллелей других

локусов, находящихся в неравновесности по сцеплению с данной

мутацией. Мутантные аллели, обеспечивающие селективное преи-

мущество гетерозигот, становятся преобладающими во многих

популяциях, не полностью изолированных друг от друга. При

этом наибольшая частота таких аллелей будет наблюдатся в ра-

йонах, где влияние поддерживающего отбора было максимальным

(например, в эпицентре эпидемии). По мере удаления от этого

района концентрация таких мутантных аллелей будет умень-

шаться, причем их распределение в разных популяциях будет

коррелировать с характером миграции населения. Подобный ха-

рактер распределения определенного мутантного аллеля в

частично изолированных популяциях принято связывать с так

называемым эффектом основателя или родоначальника.

Исследование спектров распределения мутаций в различ-

ных популяциях позволяет делать предположения относительно

возможного происхождения таких повреждений и тех механизмов,

которые лежат в основе их распространения среди населения.

Рассмотрим наиболее вероятные интерпретации различных

вариантов распределения аллелей в популяциях. Мутации,

представленные у единичных больных или в группе родственных

индивидуумов и не имеющие специфической внутригенной локали-

зации, по-видимому, являются следствием естественного мута-

ционного процесса. Если в каких-то популяциях концентрация

мутаций в различных генах повышена, вероятно, они находятся

в зоне действия внешних неблагоприятных факторов, индуцирую-

щих возникновение нарушений в структуре ДНК. В тех случаях,

когда локализация и типы мутаций носят специфический харак-

тер можно предполагать наличие особых молекулярных механиз-

мов контроля повышенного уровня мутагенеза в определеннных

районах генома. Распространение специфических мутаций в изо-

лированных популяциях происходит за счет их ограниченного

размера и повышенного уровня инбридинга (эффект родоначаль-

ника). И, наконец, обнаружение градиентного распределения

мутаций, превалирующих в различных, частично изолированных

популяциях позволяет предполагать селективное преимущество

гетерозиготных носителей мутаций на определенных этапах эво-

люционного развития.

Таким образом, сопоставляя спектры распределения одно-

типных мутаций у жителей разных континентов, разных стран, у

людей, принадлежащих к различным расам и национальностям

можно определить степень генетической близости между всеми

этими группами и реконструировать их филогенетические отно-

шения (Cavalli-Sforza,Piazza,1993). Одним из практических

следствий этих исследований является возможность прогнозиро-

вать наиболее вероятные мутации в различных генах у пациен-

тов разного этнического происхождения, что приводит к суже-

нию спектра поиска специфических мутаций. Особый интерес в

этом смысле представляют наиболее распространенные мутации

(например delF508 при муковисцидозе; R408W - при фенилкето-

нурии и многие другие). Для профилактики наследственных за-

болеваний необходима разработка эффективных и простых мето-

дов молекулярной диагностики таких мутаций как у больных,

так и у гетерозиготных носителей с целью проведения скрини-

рующих программ среди населения и выявления максимально воз-

можного числа семей с повышенным риском рождения больного

ребенка.


ГЛАВА VII.


МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИЕ АСПЕКТЫ ПРЕНАТАЛЬНОЙ ДИАГ-

НОСТИКИ НАСЛЕДСТВЕННЫХ ЗАБОЛЕВАНИЙ.


Раздел 7.1 Прямые и косвенные методы молекулярной диаг-

ностики.


Локализация и клонирование кДНК-овых последовательнос-

тей генов открывают принципиально новые возможности диагнос-

тики наследственных заболеваний, основанные на исследовании

мутантных аллелей у пациентов, членов их семей или у предпо-

лагаемых гетерозиготных носителей патологических мутаций.

Это в равной мере относится и к пренатальной диагностике,

которая может быть проведена с использованием молекулярных

методов анализа на самых ранних стадиях развития плода

(см.7.5). Эти же подходы вполне приемлемы для диагностики до

появления каких-либо клинических или биохимических симптомов

болезни (досимптоматическая диагностика), что позволяет вы-

работать и начать рациональную тактику лечения (упреждающая

терапия), а также эффективно выявлять гетерозиготных носите-

лей в семьях высокого риска, что является важным фактором

профилактики наследственных болезней. Решающими преимущест-

вами молекулярной диагностики являются её универсальность,

возможность использовать для анализа любые ДН-содержащие

клетки или ткани, причем анализ может быть произведен на лю-

бых стадиях онтогенеза, начиная со стадии зиготы.

Принципиально различают прямую и непрямую ДНК-диагнос-

тику мононогенных наследственных болезней. В общем случае,

использование прямых методов диагностики возможно лишь для

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.