Реферат: Прикладная математика
где представлены расширенные матрицы вспомогательных систем уравнений (22) ® (24) ® (25). Эти таблицы принято называть симплексными.
Следует обратить внимание на экономический смысл элементов последней строки последней симплексной таблицы. Например, коэффициент D3=7 при переменной х3 показывает, что если произвести одну единицу продукции третьего вида (она не входит в оптимальную производственную программу), то прибыль уменьшится на 7 единиц.
В заключение заметим, что в рассматриваемом простейшем примере линейной производственной задачи возможна самопроверка результата.
Воспользуемся тем, что в оптимальной производственной программе х2=0, х3=0. Предположим, что вторую и третью продукции мы не намеревались выпускать с самого начала. Рассмотрим задачу с оставшимися двумя переменными, сохранив их нумерацию. Математическая модель задачи будет выглядеть следующим образом:
|
Следует при этом обратить внимание на то, что последовательное улучшение производственной программы
(x1=0, x4=0) ® (x1=0, x4=) ® (x1=27, x4=20)
на графике означает движение от одной вершины многогранника допустимых решений к другой вершине по связывающей их стороне многоугольника (в случае трех переменных это будет "езда" по ребрам многогранника допустимых решений от одной вершины к другой до достижения оптимальной вершины).
§5. Двойственная задача
Ранее мы рассмотрели конкретную линейную производственную задачу по выпуску четырех видов продукции с использованием трех видов ресурсов по заданным технологиям.
Теперь представим себе, что возникла новая ситуация. Знакомый предприниматель П (Петров), занимающийся производством каких-то других видов продукции, но с использованием трех таких же видов ресурсов, какие имеются у нас, предлагает нам "уступить" по определенным ценам все имеющиеся у нас ресурсы и обещает платить у1 рублей за каждую единицу первого ресурса, у2 руб – второго, у3 руб – третьего. Возникает вопрос: при каких ценах у1, у2, у3 мы можем согласиться с предложением П.
Величины у1, у2, у3 принято называть расчетными, или двойственными, оценками ресурсов. Они прямо зависят от условий, в которых действует наше предприятие.
Напомним, что в нашей задаче технологическая матрица А, вектор объемов ресурсов В и вектор удельной прибыли С имели вид
Для производства единицы продукции первого вида мы должны затратить, как видно из матрицы А, 4 единицы ресурса первого вида, 2 единицы ресурса второго вида и 3 единицы третьего (элементы первого столбца матрицы). В ценах у1, у2, у3 наши затраты составят 4у1 + 2у2 + 3у3, т.е. столько заплатит предприниматель П за все ресурсы, идущие на производство единицы первой продукции. На рынке за единицу первой продукции мы получили бы прибыль 36 руб. Следовательно, мы можем согласиться с предложением П только в том случае, если он заплатит не меньше
4у1 + 2у2 + 3у3 ³ 36.
Аналогично, во втором столбце матрицы А указаны затраты различных ресурсов на производство единицы продукции второго вида. В ценах П эти затраты составят 3у1 + 5у2 + у3, а на рынке за единицу продукции второго вида мы получили бы прибыль 14 рублей. Поэтому перед предпринимателем П мы ставим условие
3у1 + 5у2 + у3 ³ 14
и т.д. по всем видам продукции.
Учтем, что за все имеющиеся у нас ресурсы нам должны заплатить 208у1 + 107у2 + 181у3 рублей. При поставленных нами условиях предприниматель П будет искать такие значения величин у1, у2, у3, чтобы эта сумма была как можно меньше. Подчеркнем, что здесь речь идет не о ценах, по которым мы когда-то приобретали эти ресурсы, а об этих ценах, которые существенно зависят от применяемых нами технологий, объемов ресурсов и от ситуации на рынке.
|
у(у1, y2, y3)
минимизирующий общую оценку всех ресурсов
f = 208y1 + 107y2 +181y3 (1)
при условии, что по каждому виду продукции суммарная оценка всех ресурсов, затрачиваемых на производство единицы продукции, не меньше прибыли, получаемой от реализации единицы этой продукции
|
3y1 + 5y2 + y3 ³ 14
4y1 + 2y3 ³ 25
5y1 + 2y2 + 5y3 ³ 50
причем оценки ресурсов не могут быть отрицательными
y10, y20, y30. (3)
Решение полученной задачи легко найти с помощью второй основной теоремы двойственности, согласно которой для оптимальных решений (х1, х2, х3, х4) и (y1, y2, y3) пары двойственных задач необходимо и достаточно выполнение условий
x 1 (4y1 + 2y2 + 3y3 - 36) = 0 y1 (4x1 +3x2 + 4x3 + 5x4 - 208) = 0
x 2 (3y1 + 5y2 + y3 - 14) = 0 y2 (2x1 +5x2 + 2x4 - 107) = 0
x 3 (4y1 + 2y3 - 25) = 0 y3 (3x1 + x2 + 2x3 + 5x4 - 181) = 0 .
x 4(5y1 + 2y2 + 5y3 - 50) = 0
Ранее было найдено, что в решении исходной задачи х1>0, x4>0. Поэтому
4y1 + 2y2 + 3y3 - 36 = 0
5y1 + 2y2 + 5y3 - 50 = 0
Если же учесть, что второй ресурс был избыточным и, согласно той же теореме двойственности, ее двойственная оценка равна нулю
у2=0,
то приходим к системе уравнений
4y1 + 3y3 - 36 = 0
5y1 + 5y3 - 50 = 0
откуда следует
у1=6, у3=4.
Таким образом, получили двойственные оценки ресурсов
у1=6; у2=0; у3=4, (4)
причем общая оценка всех ресурсов равна 1972.
|
§6. Задача о "расшивке узких мест производства"
При выполнении оптимальной производственной программы первый и третий ресурсы используются полностью, т.е. образуют ²узкие места производства². Будем их заказывать дополнительно. Пусть T(t1,t2,t3)- вектор дополнительных объемов ресурсов. Так как мы будем использовать найденные двойственные оценки ресурсов, то должно выполняться условие
H + Q-1T 0.
Задача состоит в том, чтобы найти вектор
T (t1, 0, t3),
максимизирующий суммарный прирост прибыли
W = 6t1 + 4t3 (1)
при условии сохранения двойственных оценок ресурсов (и, следовательно, структуры производственной программы)
|
предполагая, что можно надеяться получить дополнительно не более 1/3 первоначального объема ресурса каждого вида
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16