RSS    

   Реферат: Морфологический анализ цветных (спектрозональных) изображений

,

составляющие содержание леммы. Действительно, если  то согласно (23) , поскольку включение  означает, что; отсюда и из (25) получим, что ,i=1,...,N, а поэтому и в (24) .

            Убедимся в неотрицательности . В ортонормированном базисе e1,...,en, в котором , выходной сигнал i-го детектора в точке  (см. замечание 1) задача на собственные значения (23*) имеет вид , p=1,...,n,

где , .

            Так как матрица  симметрическая и неотрицательно определенная () она имеет n неотрицательных собственных значений, которым соответствуют n ортонормированных собственных векторов , а поскольку матричные элементы , то согласно теореме Фробенуса-Перрона максимальное собственное значение  - алгебраически простое (некратное), а соответствующий собственный вектор можно выбирать неотрицательным:

. Следовательно, вектор fi определен с точностью до положительного множителя , .         n

            Замечание 4.

Если  , т.е. если аппроксимируемое изображение на множествах того же разбиения имеет постоянный цвет, то в теореме 3 , .

            Наоборот, если , то

 , т.е.  определяется выражением (17), в котором  .

Итак, пусть в изображении g(×) (17) все векторы f1,.…..,fN попарно не коллинеарны, тюею цвета всех подмножеств A1,...,AN попарно различны. Тогда форма в широком смысле  изображения (17) есть множество решений уравнения

,,                                                       (27)

где , fi - собственный вектор оператора Фi, отвечающий максимальному собственному значению ri, i=1,...,N . В данном случае , если и только если выполнено равенство (27).

            Оператор П (24), дающий решение задачи наилучшего приближения  , естественно отождествить с формой в широком смысле изображения  (17).

            Заданы векторы цвета j1,..., jq, требуется определить разбиение A1,..., Aq, на множествах которого наилучшее приближение имеет соответственно цвета  j1,..., jq и оптимальные распределения яркостей [10].

            Речь идет о следующей задаче наилучшего в  приближения изображения

.           (28)

            Рассмотрим вначале задачу (28) не требуя, чтобы . Так как для любого измеримого

,              (29)

и достигается на

,                                               (30)

то, как нетрудно убедиться,

,                (31)

где звездочка * означает то же самое, что и в равенстве (14): точки xÎX, в которых выполняется равенство  могут быть произвольно отнесены к одному из множеств Ai или Aj.

            Пусть  - разбиение , в котором

                        (32)

а F: Rn-> Rn оператор, определенный условием

                         (33)

Тогда решение задачи (28) можно представить в виде

,                                        (34)

где  - индикаторная функция множества Ai (31), i=1,...,q и F -оператор, действующий в  по формуле (34) (см. сноску 4 на стр. 13).

            Нетрудно убедиться, что задача на минимум (29) с условием физичности

              (35)

имеет решение

                (36)

            Соответственно решение задачи (28) с условием физичности имеет вид

,                                   (37)

где  - индикаторная функция множества

,                (38)

            В ряде случаев для построения (34) полезно определить оператор F+: Rn-> Rn, действующий согласно формуле

                    (39)

где

, так что ,i=1,...q.  (40)

            Подытожим сказанное.

            Теорема 4. Решение задачи (28) наилучшего в приближения изображения  изображениями на искомых множествах A1,...,Aq разбиения X заданные цветами j1,..., jq соответственно, дается равенством (34), искомое разбиение A1,...,Aq определено в (31). Требование физичности наилучшего приближения приводит к решению (37) и определяет искомое разбиение формулами (38). Решение (34) инвариантно относительно любого, а (37) - относительно любого, сохраняющего физичность, преобразования, неизменяющего его цвет.

            Формой в широком смысле изображения, имеющего заданный набор цветов  j1,..., jq на некоторых множествах положительной меры A1,...,Aq разбиение поля зрения можно назвать оператор  (34), формой такого изображения является оператор F+ (37). Всякое такое изображение g(×), удовлетворяющее условиям физичности (неотрицательности яркостей), удовлетворяет уравнению F+g(×)=g(×), те из них, у которых m(Ai)>0, i=1,...,q, изоморфны, остальные имеют более простую форму.                                    n

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.