RSS    

   Реферат: Морфологический анализ цветных (спектрозональных) изображений

            Более удобное описание формы изображения может быть получено на основе методов аппроксимации цветных изображений, в которых форма определяется как оператор наилучшего приближения. В следующем параграфе дано представление формы изображения в виде оператора наилучшего приближения.

5. Задачи аппроксимации цветных изображений. Форма как оператор наилучшего приближения.

            Рассмотрим вначале задачи приближения кусочно-постоянными (мозаичными)  изображениями. Решение этих задач позволит построить форму изображения  в том случае, когда считается, что   для любого преобразования , действующего на изображение  как на вектор  в каждой точке  и оставляющего  элементом , т.е. изображением. Форма в широком смысле  определяется как оператор  наилучшего приближения изображения  изображениями

                 

где - класс преобразований , такой, что . Иначе можно считать, что

                                                                (10*)

а  - оператор наилучшего приближения элементами множества , форма которых не сложнее, чем форма . Характеристическим для  является тот факт, что, если f(x)=f(y), то для любого .

5.1. Приближение цветного изображения изображениями, цвет и яркость которых постоянны на подмножествах разбиения  поля зрения X.

            Задано разбиение , требуется определить яркость и цвет наилучшего приближения на каждом . Рассмотрим задачу наилучшего приближения в  цветного изображения f(×) (2) изображениями (4), в которых считается заданным разбиение  поля зрения X  и требуется определить  из условия

                           (11)

            Теорема 1Пусть . Тогда решение задачи (11) имеет вид

,  i=1,...,N,  j=1,...,n,                                  (12)

и искомое изображение (4) задается равенством

 .                (13)

Оператор  является ортогональным проектором на линейное подпространство (4****)  изображений (4), яркости и цвета которых не изменяются в пределах каждого Ai , i=1,...,N.

            Черно-белый вариант  (4*) цветного изображения (4) является наилучшей в  аппроксимацией черно-белого варианта  цветного изображения f(×) (2), если цветное изображение (4) является наилучшей в  аппроксимацией цветного изображения f(×) (2). Оператор , является ортогональным проектором на линейное подпространство черно-белых изображений, яркость которых постоянна в пределах каждого .

В точках множества  цвет (4**) наилучшей аппроксимации (4) цветного изображения f(×) (2) является цветом аддитивной смеси составляющих f(×) излучений, которые попадают на .

Доказательство.     Равенства (12) - условия минимума положительно определенной квадратичной формы (11), П - ортогональный проектор, поскольку в задаче (11) наилучшая аппроксимация - ортогональная проекция f(×) на . Второе утверждение следует из равенства

, вытекающего из (13). Последнее утверждение следует из равенств

,i=1,...,N вытекающих из (12) и равенства (1), в котором индекс k следует заменить на xÎX 

            Замечание 1. Для любого измеримого разбиения  ортогональные проекторы  и  определяют соответственно форму в широком смысле цветного изображения (4), цвет и яркость которого, постоянные в пределах каждого , различны для различных , ибо , и форму в широком смысле черно-белого изображения, яркость которого постоянна на каждом  и различна для разных ,[2].

Если учесть, условие физичности (2*), то формой цветного изображения следует считать проектор  на выпуклый замкнутый конус  (4***)

Аналогично формой черно-белого изображения следует считать проектор  на выпуклый замкнутый конус изображений (4*), таких, что  [2]. Дело в том, что оператор   определяет форму   изображения (4), а именно

 - множество собственных функций оператора . Поскольку  f(×) - наилучшее приближение изображения  изображениями из , для любого изображения  из  и только для таких - . Поэтому проектор  можно отождествить с формой изображения (4).

            Аналогично для черно-белого изображения a(×)

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.