RSS    

   Реферат: Морфологический анализ цветных (спектрозональных) изображений

            Таким образом доказана

            Теорема 6. Пусть  заданные векторы Rn. Решением задачи (30) является изображение  

 ,

где ортогональный проектор  определен равенством (25), а  - индикаторная функция множества (31), i=1,...,N.  Невязка наилучшего приближения равна

.                             n

            Замечание 5.  Так как при 

,

то условия (31), определяющие разбиение , можно записать в виде

,                                            (32)

показывающем, что множество  в (32) инвариантно относительно любого преобразования изображения , не изменяющего его цвет.

                                                                                                            Теоремы 3 и 6 позволяют сформулировать необходимые и достаточные условия наилучшего приближения изображения f(×) изображениями (17), при котором должны быть найдены  и ci0 , i=1,...,N, такие, что

.

            Теорема 7. Для заданного изображения f(×) определим множества  равенствами (32), оператор П - равенством (24),   - равенствами (25). Тогда ,

определено равенством (32), в котором  - собственный вектор оператора Фi (23), отвечающий наибольшему собственному значению, причем в (23) , наконец,  будет дано равенством (20), в котором , где  - собственный вектор оператора , отвечающий наибольшему собственному значению ; наконец,

.            n

            Замечание 6. Следующая итерационная процедура полезна при отыскании : Для изображения f(×) зададим  и по теореме 5 найдем  и , затем по теореме 3, используя  найдем  и . После этого вновь воспользуемся теоремой 3 и по  найдем  и  и т.д. Построенная таким образом последовательность изображений  очевидно обладает тем свойством, что числовая последовательность , k=1,2,.….. монотонно не возрастает и, следовательно, сходится. К сожалению ничего определенного нельзя сказать о сходимости последовательности .

            Формы  (10) и  (9) удобно задавать операторами Пf  и П*f соответственно.

            Теорема 7. Форма  в широком смысле изображения определяется ортогональным проектором П*f :

 ,

при этом  и .

            Доказательство. Так как для  , то получаем первое утверждение. Для доказательства второго утверждения рассмотрим выпуклую задачу на минимум , решение которой определяется условиями (см., например, [11]) . Отсюда следует, что  и тем самым доказано и второе утверждение      n

            Замечание. Так как , где fi(x) - выходной сигнал i-го детектора в точке , причем fi(x)³0 ,i=1,...,n, и, следовательно цвет  реальных изображений непременно имеет неотрицательные , то для реальных изображений , условия  и , эквивалентны. Если же для некоторого , то условие  не влечет . Заметим также, что для изображений g(×), удовлетворяющих условию , всегда .

            Для спектрозональных изображений характерна ситуация, при которой k детекторов регистрируют рассеянную объектами солнечную радиацию в диапазоне видимого света, а остальные n-k регистрируют собственное тепловое излучение объектов ( в инфракрасном диапазоне). В таком случае любое изображение можно представить разложением

                                                               (40)

В котором

. Если ИК составляющей солнечного излучения можно пренебречь по сравнению с собственным излучением объектов, то представляет интерес задача приближения изображениями f(×) , в которых f1(×) - любая неотрицательная функция из , j1(×) - фиксированное векторное поле цвета, f2(×) - термояркость, j2(×) - термоцвет в точке . Форма П*f видимой компоненты f(×) (40) определяется как оператор наилучшего приближения в задаче

, в данном случае

, причем П*f действует фактически только на  "видимую компоненту" g(×), обращая "невидимую, ИК, компоненту" g(×) в ноль.

            Форма ИК компоненты f(×) может быть определена лишь тогда, когда известно множество возможных преобразований j2(×) f2(×).

            Некоторые применения.

            Задачи идентификации сцен.

            Рассмотрим вначале задачи идентификации сцен по их изображения, неискаженным геометрическими преобразованиями, поворотами, изменениями масштаба и т.д. Ограничимся задачами, в которых предъявляемые для анализа изображения получены при изменяющихся и неконтролируемых условиях освещения и неизвестных и, вообще говоря, различных оптических характеристиках сцены.

            1). Задачи идентификации при произвольно меняющейся интенсивности освещения.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.