RSS    

   Реферат: Морфологический анализ цветных (спектрозональных) изображений

 , то для любого изображения  и для любого  , ибо -измеримо, N=1,2,...           n

            Вопрос о том, каким образом может быть построена исчерпывающая последовательность разбиений, обсуждается в следующем пункте.

            Заданы векторы f1,...,fq, требуется определить разбиение , на множествах которого наилучшее приближение принимает соответственно значенния f1,...,fq. Рассмотрим задачу приближения цветного изображения f(×), в которой задано не разбиение  поля зрения X, а векторы  в , и требуется построить измеримое разбиение поля зрения, такое, что цветное изображение  - наилучшая в  аппроксимация f(×). Так как

,              (14*)

то в Ai следует отнести лишь те точки , для которых , =1,2,...,q, или, что то же самое, =1,2,...,q. Те точки, которые согласно этому принципу могут быть отнесены к нескольким множествам, должны быть отнесены к одному из них по произволу. Учитывая это, условимся считать, что запись

     ,           (14)

означает, что множества (14) не пересекаются и .

            Чтобы сформулировать этот результат в терминах морфологического анализа, рассмотрим разбиение , в котором

                          (15)

и звездочка указывает на договоренность, принятую в (14). Определим оператор F, действующий из  в  по формуле , , i=1,...,q. Очевидно, F всегда можно согласовать с (14) так, чтобы включения  и , i=1,...,q, можно было считать эквивалентными. [8]

            Теорема 2.     Пусть   - заданные векторы Rn. Решение задачи

наилучшего в  приближения изображения f(×) изображениями  имеет вид , где  - индикаторная функция множества . Множество  определено равенством (15). Нелинейный оператор , как всякий оператор наилучшего приближения удовлетворяет условию F2=F, т.е. является пректором.

            Замечание 2. Если данные задачи доступны лишь в черно-белом варианте, то есть заданы числа , i=1,...,q, которые можно считать упорядоченными согласно условию , то, как показано в [3], искомое разбиение X состоит из множеств

 

где , и имеет мало общего с разбиением (14).

            Замечание 3. Выберем векторы fi, i=1,..,q  единичной длины: , i=1,...,q. Тогда

.                 (16)

            Множества (16) являются конусами в Rn , ограниченными гиперплоскостями, проходящими через начало координат. Отсюда следует, что соответствующее приближение  изображения f(×) инвариантно относительно произвольного преобразования последнего, не изменяющего его цвет (например ), в частности, относительно образования теней на f(×).

            Замечание 4. Для любого заданного набора попарно различных векторов  оператор F, приведенный в теореме 2, определяет форму изображения, принимающего значения  соответственно на измеримых множествах  (любого) разбиения X. Всякое такое изображение является неподвижной (в ) точкой F: , если , все они изоморфны между собой. Если некоторые множества из  - пустые, или нулевой меры, соответствующие изображения имеют более простую форму.

            Иначе говоря, в данном случае формой изображения  является множество всех изображений, принимающих заданные значения  на множествах положительной меры  любого разбиения X, и их пределов в .

            Теоремы 1 и 2 позволяют записать необходимые и достаточные условия наилучшего приближения изображения f(×) изображениями , в котором требуется определить как векторы , так и множества  так, чтобы

.                         

            Следствие 1.

            Пусть Di ,i=1,...,N, - подмножества Rn (15), П - ортогональный проектор (13), , где . Тогда необходимые и достаточные условия  суть следующие: , где , .

            Следующая рекуррентная процедура, полезная для уточнения приближений, получаемых в теоремах 1,2, в некоторых случаях позволяет решать названную задачу. Пусть  - исходные векторы в задаче (14*),  - соответствующее оптимальное разбиение (14), F(1)- оператор наилучшего приближения и  - невязка. Воспользовавшись теоремой 1, определим для найденного разбиения  оптимальные векторы . Согласно выражению (13) , и соответствующий оператор наилучшего приближения П(1) (13) обеспечит не менее точное приближение f(×), чем F(1): . Выберем теперь в теореме 2 , определим соответствующее оптимальное разбиение  и построим оператор наилучшего приближения F(2). Тогда . На следующем шаге по разбиению  строим  и оператор П(3) и т.д.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.