Реферат: Статистика
Непременными условиями корректного использования корреляционного метода являются достаточно большое число единиц совокупности, однородность совокупности и отсутствие выделяющихся, «аномальных» наблюдений, проверка которых уже выполнена в п.4 данного задания.
Для установки факта наличия связи, заполним групповую таблицу №5а, по данным таблицы №5; на рисунке №1 построим поле корреляции, по исходным данным таблицы №1, и эмпирическую линию регрессии, по данным таблицы №5а, принимая середину интервала за , за – прибыль в среднем на один банк:
№ п/п |
Капитал, млн. руб. |
Число Банков |
Середина интервала, млн. руб. |
Прибыль в среднем на один банк, млн. руб. |
1 |
2 |
3 |
4 |
5 |
I | 770 – 825 | 10 | 797,5 | 15,48 |
II | 825 – 880 | 3 | 852,5 | 19,23 |
III | 880 – 935 | 7 | 907,5 | 19,54 |
IV | 935 – 990 | 4 | 962,5 | 24,27 |
V | 990 – 1045 | 2 | 1017,5 | 22,30 |
Анализ таблицы №5а свидетельствует, что существует зависимость между капиталом и прибылью банков.
Поле корреляции, имеет форму вытянутого эллипса и ясно показывает, что имеется тенденция к росту из левого нижнего угла в правый верхний. Значит, имеется прямая корреляционная зависимость между капиталом и прибылью банков.
Эмпирическая линия регрессии также имеет некоторую тенденцию к росту, что также свидетельствует о наличии прямой корреляционной зависимости между капиталом и прибылью банков.
8. Определение тесноты и существенности связи
Эмпирическая линия регрессии (рисунок №1) – ломаная линия. Изломы этой линии свидетельствуют о влиянии на признак прочих факторов, помимо признака . Чтобы абстрагироваться от влияния прочих факторов, нужно прибегнуть к выравниванию полученной ломаной линии регрессии. Для этого сначала необходимо установить теоретическую форму связи, т.е. выбрать определенный вид функции, наилучшим образом отображающий характер изучаемой связи.
Выбор формы связи имеет решающее значение в корреляционно-регрессионном анализе, но этот выбор всегда связан с некоторой условностью, вызванный тем, что нужно находить форму функциональной зависимости, в то время как зависимость лишь в той или иной степени приближается к функциональной. Но если зависимость довольно высокая, т.е. довольно близко приближается к функциональной, тогда именно теоретическая линия регрессии и ее параметры приобретают практическое значение.
На основании качественного анализа исходных данных (таблица №1) и эмпирической линии регрессии (рисунок №1) можно предположить, что между капиталом и прибылью банков существует линейная зависимость. Для определения тесноты этой зависимости воспользуемся линейным коэффициентом корреляции:
где | значение факторного показателя | |
среднее значение факторного показателя | ||
значение результативного показателя | ||
среднее значение результативного показателя | ||
число единиц в совокупности | ||
среднее квадратическое отклонение по факторному показателю | ||
среднее квадратическое отклонение по результативному показателю |
Для вычисления линейного коэффициента корреляции воспользуемся расчетами, выполненными в таблице №4, тогда
Среднее значение и среднее квадратическое отклонение результативного показателя
рассчитывается аналогично факторному:
где | среднее значение результативного показателя | |
среднее квадратическое отклонение по результативному показателю | ||
значение результативного показателя | ||
число единиц в совокупности |
Коэффициент корреляции показывает не только тесноту, но и направление связи. Его значение изменяется от до . Если коэффициент имеет знак минус, значит, связь обратная, если имеет знак плюс, то связь прямая. Близость к единице в том и в другом случае характеризует близость к функциональной зависимости.
Таким образом, значение свидетельствует о прямой и достаточно тесной связи между величиной капитала и прибылью банка.
Однако, чтобы это утверждать, необходимо дать оценку существенности линейного коэффициента корреляции, что можно выполнить на основании расчета t-критерия Стьюдента:
где | линейный коэффициент корреляции | |
число единиц в совокупности |
Для числа степеней свободы и уровня значимости 1% табличное значение , т.е. . Следовательно, с вероятностью можно утверждать, что в генеральной совокупности существует достаточно тесная прямо пропорциональная линейная зависимость между величиной капитала и прибылью банка.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10