RSS    

   Реферат: Лекции по физике В.И.Бабецкого

.

Если бы мы произвели разложение поля в точке, вот я там выкинул , если ещё взять следующие поправки, то тут пошло бы слагаемое, которое характеризовало бы не дипольный момент, а, так называемый, квадрупольный момент и дальше моменты более высоких порядков. Вот сама такая процедура называется разложением по мультиполям. Мультиполь нулевого порядкам – это просто заряд, дальше, мультиполь первого порядка – это дипольный момент, дальше там квадрупольный момент. Дипольный момент задаётся вектором, квадрупольный бы момент задавался квадратной матрицей из девяти элементов, но вследствие симметрии там было бы только шесть отличных от нуля и так далее.

Это мы нашли потенциал, ну, а теперь поупражняемся в нахождении напряжённости.  – это даст напряжённость поля точечного заряда, вычислим . = 1)==  2) = .

Тогда для напряжённости поля получаем:

.


Поле диполя.

Диполем называется такое распределение заряда, для которого полный заряд равен нулю, однако дипольный момент не равен нулю: . Легко предъявить такое распределение. Пусть мы имеем два одинаковых точечных заряда, но противоположных знаков. . Дипольный момент у нас был определён: . это что означает? заряд в маленьком элементе объёма dq умножается на радиус-вектор и суммируется по всем зарядам, если записать это дело через сумму, то это будет так: . Вот этот интеграл, если представить всё это как совокупность точечных зарядов, изображается вот такой суммой, каждый заряд умножается на свой радиус-вектор и всё складывается.

Между прочим, в механике, если мы брали бы массу частицы, умножали на радиус-вектор и суммировали, чтобы мы получили? Мы получили бы массу системы умноженную на радиус-вектор центра масс. Если начало координат выбрать в центре масс системы, то «дипольный момент – распределение масс» всегда равнялся бы нулю. Электрический заряд имеет разные знаки, здесь ситуация другая.

Значит, дипольный момент для нашей системы равняется: . Дипольный момент двух одинаковых по величине и противоположных по знаку зарядов – это вектор, идущий из отрицательного заряда в положительный, умноженный на заряд.

Теперь найдём электрическое поле. Пусть дипольный момент, вектор , в начале координат ориентирован вдоль оси ОХ, . Вычислим поле в точке (х,0,0).

     , где .

Тогда  .

Мораль такая: на оси ОХ напряжённость поля убывает как , то есть она обратно пропорциональна кубу расстояния, от точечного заряда – обратно пропорциональна квадрату расстояния. Направление вектора  в точке (х,0,0) задаётся направлением вектора , то есть напряжённость направлен вдоль оси ОХ.

            Теперь возьмём точку (0,у,0). . Это что означает? Что для этого диполя вектор  в точке (х,0,0) такой, а здесь в точке (0,у,0) вектор - и по величине в два раза меньше, на том же самом расстоянии, х=у.

           


Электрический диполь, ориентированный таким образом, создаёт поле с такими силовыми линиями:

Вот такую структуру имеет поле диполя.

Многие молекулы обладают дипольным моментом, и с этим связаны свойства вещества, которые мы рассмотрим в следующий раз.

5

Сила, действующая на ограниченное

распределение заряда во внешнем поле

Проблема такая: имеем поле, имеем какой-то заряд, размазанный по некоторой области, локализованный заряд1). Нас интересует, какая сила будет действовать на заряженное тело, ну, или в конечном итоге, как оно будет двигаться, находясь во внешнем электрическом поле.

Вы должны, конечно, представлять, что, если это ограниченное распределение есть точечный заряд, то вы знаете, какая сила на него действует2). Наша задача найти силу, действующую на произвольное распределение заряда.

Ну, в общем-то, понятно, как это можно сделать, надо разбить распределение на совокупность точечных зарядов, находить силы, действующие на каждый из этих зарядов, и суммировать потом все силы по всему распределению. Вот такая программа. Ну, как она реализуется, мы сейчас увидим.

На точечный заряд действует сила  , где , оказывается, потенциальной энергией заряда в электрическом поле (мы видели в механике, что, если сила представляется как градиент от  некоторой скалярной функции, то эта функция интерпретируется как потенциальная энергия), при этом имеет место закон сохранения энергии , при этом заряд движется так: ,  это называется полной энергией (сумма кинетической и потенциальной энергии). Это для точечного заряда.

Потенциальная энергия ограниченного распределения заряда во внешнем поле.

Пусть имеется распределение заряда, разобьём заряд на малые элементы объёма dV, в этом элементе объёма заряд .   - это потенциальная энергия заряда в элементе объёма dV, энергия элементарного заряда. Тогда вся потенциальная энергия этого распределения будет равна .

Это точная формула. Теперь мы займёмся получением приближённой формулы.

Выберем некоторую точку внутри распределения, радиус-вектор этой точки будет , радиус-вектор  – это вектор, идущий из выбранной точки в этот элемент объёма, . Тогда потенциал в точке  – это 1). Пока написано разложение с точностью до первых производных, дальше там пойдут слагаемые со вторыми производными и так далее, это факт математический.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.