RSS    

   Реферат: Синтез комбинацонных схем и конечных автоматов, сети Петри

     x(j)

s(j)

0

1

2

3

0

0

1

2

3

1

2

3

4

5

2

4

5

6

7

3

6

7

0

1

4

0

1

2

3

5

2

3

4

5

6

4

5

6

7

7

6

7

0

1

Таблица 2.3.2 – Таблица переходов автомата

     x(j)

s(j)

0

1

2

3

0

0/1

1/0

2/1

3/0

1

2/0

3/1

4/0

5/1

2

4/1

5/0

6/1

7/0

3

6/0

7/1

0/0

1/1

4

0/1

1/0

2/1

3/0

5

2/0

3/1

4/0

5/1

6

4/1

5/0

6/1

7/0

7

6/0

7/1

0/0

1/1

Таблица 2.3.3 – Общая таблица переходов и выходов автомата

Перейдём непосредственно к минимизации полученного автомата по числу состояний. Для этого воспользуемся алгоритмом, известным в литературе как метод Гриса - Хопкрофта. Его достоинство в том, что он даёт гарантированно минимальную форму автомата. Однако в общем случае он является довольно трудоёмким и применяется, как правило, для автоматов с небольшим количеством состояний. Он основан на свойстве транзитивности эквивалентности

                                  (si ~ sj) ∩ (sj ~ sk)  (si ~ sk)                              (2.3.1)

Пара эквивалентных состояний переходит при всех возможных значениях входа в пары также эквивалентных состояний.

Алгоритм состоит из следующих шагов.

Сначала разбиваем все состояния автомата на множества по признаку совпадения выходных сигналов. В нашем случае получаем 2 множества:       S1 = {0, 2, 4, 6}  и  S2 = {1, 3, 5, 7}.

Чтобы назвать каждый из полученных классов новым состоянием, нужно убедиться в том, что в каждый класс входят только эквивалентные между собой состояния. Для этого составляем таблицу пар эквивалентных состояний. При этом не забываем о том, что эквивалентными могут быть состояния, принадлежащие только одному классу. В таблицу заносим все те пары, в которые переходят при соответствующих входах исходные, вероятно эквивалентные, пары:

пары

0

1

2

3

0;2

0;4

1;5

2;6

3;7

0;4

0;0

1;1

2;2

3;3

0;6

0;4

1;5

2;6

3;7

2;4

4;0

5;1

6;2

3;7

2;6

4;4

5;5

6;6

7;7

4;6

0;4

1;5

2;6

3;7

1;3

2;6

3;7

4;0

5;1

1;5

2;2

3;3

4;4

5;5

1;7

2;6

3;7

4;0

5;1

3;5

6;2

7;3

0;4

1;5

3;7

6;6

7;7

0;0

1;1

5;7

2;6

3;7

4;0

5;1

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.