Реферат: Синтез комбинацонных схем и конечных автоматов, сети Петри
сделать следующее:
а) представить F1 и F2 в виде СДНФ.
б) минимизировать (по количеству переменных в ДНФ) F1 с
помощью карт Карно, F2 – методом Квайна-МакКласки.
в) реализовать в виде комбинационной схемы на логических элементах F1 – в базисе И – НЕ, F2 – в базисе ИЛИ – НЕ, предварительно приведя F1 и F2 к соответствующим базисам.
gi и zi вычислять по выражениям:
(1.1.3)
(1.1.4)
при
g0 = A, z0 = B .
Параметр изменять от 1 до тех пор, пока не будет получено 9
различных значений gi и zi.
1.2 Теоретические сведения.
Булевой алгеброй называется множество S объектов A, B, C…,
в котором определены две бинарные
операции (логическое сложение – дизъюнкция(+) и логическое умножение –
конъюнкция(∙)) и одна унарная операция(логическое отрицание()). Оно обладает следующими
свойствами:
а) Для A,
B, C
S
1)
,
(замкнутость);
2)
(коммутативные
законы);
3)
(ассоциативные
законы);
4)
(дистрибутивные законы);
5)
(свойства
идемпотентности);
6)
в
том и только том случае, если
(свойство совместимости);
7)
S содержит
элементы 1 и 0 такие, что для всякого элемента
;
8) для каждого элемента A класс S содержит элемент Ã (дополнение элемента A, часто обозначаемое символами Ā или 1- A ) такой, что
,
.
В каждой булевой алгебре
(законы поглощения),
(законы склеивания),
(двойственность, законы де Моргана).
Если даны n булевых переменных X1, X2,…, Xn, каждая из которых может быть равна любому элементу булевой алгебры, то булевой функцией называется выражение
(1.2.1)
В
каждой булевой алгебре существует ровно различных
булевых функций n переменных.
Система булевых функций называется полной (базисом), если любая функция может быть представлена в виде суперпозиции функций выбраной системы.
Под критерим минимизации (упрощения) булевых функций будем понимать достижение минимума букв в записи функции.
Введём понятие многомерного куба.
Любую булеву функцию n переменных, заданную в ДНФ или СДНФ, можно отобразиь на n-мерном кубе, построенном в ортогональном базисе n булевых переменных. Каждое слагаемое в ДНФ или СДНФ представляется гиперплоскостью соответствующей размерности: если оно представляет собой конъюнкцию n переменных – точка, n-1 переменных – прямая, n-2 переменных – плоскость и т.д. Элементы n-мерного куба, имеющие s измерений, назовём s-кубами.
Комплекс K(y) кубов функции y=ƒ(x1,x2,…,xn) есть объединение Ks(y) множеств всех её кубов. Отсутствующие в конъюнкциях переменные будем обозначать через x.
1.3 Расчёты и полученные результаты.
По варианту задания находим gi и zi:
i |
gi |
zi |
0 |
5 |
0 |
1 |
1 |
6 |
2 |
8 |
2 |
3 |
5 |
9 |
4 |
13 |
6 |
5 |
11 |
14 |
6 |
4 |
12 |
7 |
3 |
5 |
8 |
13 |
4 |
9 |
13 |
14 |
10 |
8 |
14 |
11 |
9 |
9 |
12 |
5 |
10 |
13 |
7 |
6 |
Неповторяющиеся значения gi: 5, 1, 8, 13, 11, 4, 3, 9, 7. Неповторяющиеся значения zi: 0, 6, 2, 9, 14, 12, 5, 4, 10. Таким образом, для F1 получаем выражение
, (1.3.1)
для F2:
. (1.3.2)
Для минимизации первой функции применяем метод карт Карно.
Карта Карно – прямоугольник с 2n клетками, каждой из которых соответствует своя конъюнкция из n переменных и их отрицаний (дополнений).
Проставляя единицы в соответствующих клетках, выбираем затем минимальную из всех возможных комбинацию покрытий. Применим карту Карно к заданной функции:
x3x4
00 01
11 10
00 1 1
01 1 1 1
x1x2
11 1
10 1 1 1
Рисунок 1.2.1 – карта Карно
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9