Реферат: Сетевая телефония
Степень использования канала P вероятность отсутствия кадров в системе P0.
Используя данный метод мы определили, что при Гауссовском распределении нагрузки на канал его скорость должна составлять 2048 кбит/с. Время ожидания в очереди при этом составит 0,0107367 сек, а время передачи по каналу связи в одну сторону - 0,0046875 сек. Степень использования канала 70%, а вероятность отсутствия кадров в системе – 30%.
Технологический раздел
3. Технологическая часть.
3.1. Организация рабочего места оператора IP–телефонии.
При организации рабочего места весьма важным фактором является рабочая поза работника, т.е. положение его корпуса, головы, рук и ног относительно. Так как работник работает сидя, ему необходимо обеспечить правильную и удобную посадку, что достигается устройством опоры для спины, рук, ног, правильной конструкцией сиденья, способствующей равномерному распределению массы тела.
Важным элементом рациональной планировки рабочего места является учет индивидуальных антропометрических и психофизиологических данных работающего.
В Санитарных нормах и правилах – СанНиП 2.2.2.542-96 даются общие требования к организации и оборудованию рабочих мест с ПЭВМ.
Конструкция рабочего стола должна обеспечивать оптимальное размещение на рабочей поверхности используемого оборудования с учётом его количества и конструктивных особенностей (размер ПЭВМ, клавиатуры и др.), характера выполняемой работы.
Высота рабочей поверхности стола должна регулироваться в пределах 680-800 мм; при отсутствии такой возможности высота рабочей поверхности стола для ПЭВМ, на основании которых рассчитываются конструктивные размеры, следует считать: ширину 800,1000,1200 и 1400мм, глубину 800 и 1000мм при нерегулируемой его высоте, равной 725мм.
Рабочий стол должен иметь пространство для постановки ног, которое составляет: высоту – не менее 600мм, ширину – не менее 500мм, глубину на уровне колен – не менее 450мм и на уровне вытянутых ног – не менее 650мм.
Конструкция рабочего стула (кресла) должна поддерживать рациональную рабочую позу при работе с ПЭВМ, позволять изменять позу с целью снижения статического напряжения мышц шейно – плечевой области и спины для предупреждения утомления.
Рабочий стул(кресло) должен быть подъёмно – поворотным и регулируемым по высоте и углам наклона сиденья и спинки, а также расстоянию спинки от переднего края сиденья.
Конструкция стула должна обеспечивать:
· Ширину и глубину поверхности сиденья не менее 400мм;
· Поверхность сиденья с закругленным передним краем;
· Регулировку высоты поверхности сиденья в пределах 400-550мм и углов наклона вперёд до 150 и назад до 50;
·
Высоту опорной поверхности спинки 300мм,
ширину – не менее 380мм и радиус кривизны горизонтальной плоскости – 400мм;
·
Угол наклона спинки в вертикальной плоскости в пределах 0300;
· Регулировку расстояния спинки от переднего края сиденья в пределах 260-400мм;
· Стационарные или съёмные подлокотники длиной не менее 250мм и шириной 50-70мм;
·
Регулировку подлокотников по высоте над сиденьем в пределах 23030мм и внутреннего
расстояния между подлокотниками в пределах 350-500мм.
Рабочее место должно быть оборудовано подставкой для ног имеющей ширину не менее 300мм, глубину не менее 400мм,регулировку по высоте в пределах до 150мм и по углу наклона опорной поверхности подставки до 200. Поверхность подставки должна быть рифленой и иметь по переднему краю бортик высотой 10мм.
Рабочие места должны быть оборудованы соответствующей мебелью, отвечающей наиболее комфортабельным условиям работы и требованиям физиологии, психологии и эстетики.
Планировкой рабочего места называют пространственное расположение основного и вспомогательного оборудования, оснастки и предметов труда, а также самого работающего, обеспечивающее рациональное выполнение трудовых движений и приёмов, благоприятные и безопасные условия труда.
![]() |
3.1.1. Планировка рабочего места оператора связи.
На рисунке цифрами показано:
1. Урна;
2. Персональный компьютер;
3. Рабочий стол;
4. Мышка + коврик;
5. Журнал регистрации неисправностей;
6. Телефон;
7. Кресло.
|
1. Дверь;
2. IDU – блок;
3. Розетка (евростандарт);
4. Урна;
5. Персональный компьютер;
6. Стол письменный;
7. Мышка + коврик;
8. Журнал регистрации неисправностей;
9. Телефон;
10. Окно;
11. Шкаф;
12. Кресло.
3.2. Заземление
3.2.1. Требования к заземлению электрооборудования
Заземление телекоммуникационного оборудования должно выполняться с целью:
- защиты персонала от поражения электрическим током при повреждении изоляции;
- защиты оборудования от электростатических разрядов;
- защиты оборудования от воздействия электромагнитных помех.
Стойки, металлические кронштейны с изоляторами, антенные устройства ТВ, а также металлические части шкафов, кроссов, пультов и другие металлоконструкции оборудования устройств связи должны быть заземлены.. Металлические шкафы, каркасы и другие металлоконструкции, на которых установлено электрооборудование напряжением выше 42В переменного тока, должны иметь защитное зануление путем соединения с нулевой жилой электрической сети напряжением 380/220 В.
Величина сопротивления заземления оборудования должна соответствовать ГОСТ 464-79. Сопротивление заземления в общей точке не должно превышать значения 2 Ом в любое время года.
Рабочее заземление оборудования связи, сигнализации и диспетчеризации следует выполнять согласно техническим требованиям на это оборудование.
3.2.2. Расчет защитного заземления
Исходные данные:
Все оборудование здания питается от трехфазной сети, напряжением 380В с изолированной нейтралью. Общая мощность источников питания сети превышает 100 кВА. Здание имеет железобетонный фундамент на глинистом грунте. Площадь, ограниченная периметром здания 852000м2.
Расчет:
Поскольку питающая сеть не превышает 1000В, имеет изолированную нейтраль и мощность источников питания более 100кВА, в качестве нормативного сопротивления заземления берем Rн = 4 Ом.
В качестве естественного заземлителя используем фундамент здания. Для нашего случая удельное сопротивление грунта (глина) rr = 40 Ом * м; коэффициенты сезонности, зависящие от климатической зоны СНГ Yв = 1,5 – 1,8 при расчете вертикальных электродов и Yг = 3,5 – 4,5 при расчете сопротивления горизонтальных электродов) принимаем равными: Yв = 1,65 Yг = 4.
Удельное электрическое сопротивление грунта в зоне размещения заземлителя определяется по формуле:
r = rr * Yг = 40 * 4 = 160 Ом * м
Сопротивление естественного заземлителя для железобетонного фундамента:
Re = 0,5 r / S1/2 = 0,5 *160/2001/2 = 5,66 Ом,
что превышает Rн = 4 Ом.
Следовательно необходим искусственный заземлитель, подключенный параллельно естественному, с допустимым сопротивлением:
Rн.доп. = Re * Rн /(Re - Rн) = 5б7 *4 /(5,7 – 4) = 13,4 Ом.
Искусственный заземлитель располагаем на пониженном и увлажненном участке территории предприятия на расстоянии 30 м от здания. Заземлитель выполняем как систему расположенных в ряд вертикальных электродов в виде стержней длиной l = 2,6м из угловой стали с шириной полки b = 0,05м, верхние концы которых лежат на глубине t0 = 0,7м и соединены полосой связи из стали, сечением 5 х 40мм.
Для вертикальных электродов, удельное сопротивление грунта в зоне размещения заземлителей:
r = rв * Yв = 40 * 1,65 = 66 Ом * м
Сопротивление одиночного вертикального электрода определим:
Rэ = 0,366 * rlg 2l/d + 0,5lg (4t+l)/(4t-l)) / l = 20,32 Ом
где l>>d; t = 0,5l = t0; l, d соответственно длина и диаметр электрода;
для электрода из уголковой стали значение d = 0,95b.
Для определения количества вертикальных электродов n находим предварительно произведение коэффициента использования вертикальных электродов hэна их количество:
hэ* n = Rэ /Rн.доп. = 1,52
Задавшись расстоянием a между электродами в виде соотношения a/l, находим n (для a/l = 2; n = 2).
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30