RSS    

   Реферат: Анализ погрешностей волоконно-оптического гироскопа

Оценим влияние тем­пературных градиентов на точность ВОГ. Запишем фазу Саньяка в виде

                                    ,                            (2.74)

 где N - число витков катушки, - площадь витка,

Каждый элемент волоконного контура  вносит при­ращение фазовой задержки   в оба противоположно бегущих луча. Если температура Т изменяется во времени t и в зависимости от положения участка  вдоль волокна, то дифференциальное приращение фазы за временной пе­риод t в любой точке волокна можно приближенно выра­зить в виде

                        ,                           (2.75)

где b - фазовая постоянная распространения волокна; a - линейный коэффициент теплового расширения.

Первое слагаемое в квадратных скобках уравнения соответствует приращению фазы на 1° С на длине  при изменении постоянной распространения b; второе слагаемое соответствует приращению фазы на элементе длины  при температурном удлинении волокна и при из­менении температуры на 1° С. Если  - температурный градиент во времени, то множитель в круглых скобках уравнения соответствует перепаду температур за время t. Полученное уравнение справедливо для времен­ных интервалов порядка времени распространения луча в волоконном контуре (несколько микросекунд).

Соответствующие волновые фронты противоположно распространяющихся лучей пересекают дифференциальный элемент волокна , расположенный на расстоянии l от конца волоконного контура, в моменты, разделенные ин­тервалом времени:

   

       ,              (2.76)

 где L -  длина контура; w - частота излучения.

Для получения невзаимного фазового сдвига, обусловленного температурным градиентом подставим выражение для t в выражение для dj и проинтегрируем по длине волокна L:

                           (2.77)

Приравнивая этот фазовый сдвиг, появившийся за счет температурного градиента, фазовому сдвигу Саньяка, , можно определить «кажущуюся» угловую скорость вращения ( обусловленную термически индуцированной невзаимностью контура ВОГ), т.е.

     .                                 (2.78)

Интегрирование «кажущейся» угловой скорости по времени дает угловую ошибку ВОГ за счет температурных градиентов

Выражение в квадратных скобках под интегралом соответствует перепаду температур за время 0 - t.

Для количественной оценки влияния термически индуцированной невзаимности вычислим величину  для типового ВОГ, работающего в соответствующих рабочих условиях. Считаем, что многослойный волоконный контур намотан на цилиндр, при этом разница между внешним и внутренним диаметрами мала по сравнению со средним диаметром. Полагаем, что температура контура изменяется линейно от его внутреннего слоя к наружному слою.

Если между начальным моментом работы ВОГ (t=0) и более поздним моментом разница температур по сечению катушки изменяется на величину DТ, то

                                                         (2.79)

Следовательно:

                                               (2.80)

Произведем численную оценку требуемой стабильности температуры при невзаимности    для типовых значений параметров ВОГ:

R = 10 см

L = 1,56 км

N = 2480

Время интегрирования 1 час.

                        °C

Сохранение такого постоянства температуры в относитель­но стабильных рабочих условиях является серьезной зада­чей, не говоря уже о периоде прогрева или изменений ок­ружающих условий, что часто имеет место при применениях гироскопов.

Можно предложить два возможных метода уменьшения термически индуцированной невзаимности. Первый метод состоит в поиске материалов для волокна с малым тем­пературным коэффициентом индекса преломления . Второй метод состоит в намотке волоконного контура так, что части волокна, которые находятся на равных расстояни­ях от середины контура, располагаются рядом друг с дру­гом. Это приводит к тому, что температура Т ( t , l ) рас­пределяется симметрично вокруг l =L/2; в этом случае ин­теграл в уравнении для становится исчезающе малым. Однако, если катушка намотана таким образом, ее витки будут часто пересекаться, что приведет к избыточным по­терям на микроизгибах или потребует достаточно толсто­го буферного покрытия. Таким образом, теоретическое рассмотрение влияния температурных градиентов показы­вает, что термически индуцированная невзаимность нала­гает практический предел на чувствительность ВОГ, кото­рый значительно выше фотонного предела. Если использу­ется одномодовое волокно из обычного материала, то температурные градиенты могут ограничить применение ВОГ лишь в системах управления невысокой точности.

2.5. Влияние внешнего магнитного поля на

     точностные характеристики ВОГ.

Существует много веществ, оптические параметры ко­торых зависят от величины напряженности внешнего маг­нитного поля. Коэффициент преломления среды есть один из таких параметров. Изменение коэффициента преломле­ния связано с вращением плоскости поляризации излуче­ния, распространяющегося в среде. Вращение плоскости поляризации светового луча, распространяющегося в среде, под действием магнитного поля обусловлено эффектом Фарадея. Иногда эффектом Фарадея называют искусствен­ную оптическую активность, возникающую в среде под дей­ствием магнитного поля.

Оптической активностью является способность вещест­ва поворачивать вектор поляризации линейно-поляризованного светового луча. Если причиной возникновения враща­тельной способности является какое-либо внешнее воздей­ствие (например, магнитное поле), то активность этого ти­па является искусственной. В оптически активном вещест­ве оптическое излучение распадается на две волны, поля­ризованные циркулярно - по правому и левому кругам. Векторы поляризации этих волн вращаются в противопо­ложных направлениях, а коэффициенты преломления для них различны.

Линейно-поляризованный световой луч можно предста­вить суперпозицией двух волн, поляризованных по кругу, со взаимно противоположным вращением вектора поляри­зации и равными амплитудами колебаний. Рассмотрим распространение линейно-поляризованной волны в среде, проявляющей эффект Фарадея. Для анализа распространения волны в среде, помещенной в магнитное поле, представим волну в виде суммы двух волн, поляризованных по кругу с противоположными направлениями вращения и различными скоростями распространения:

                                                       ,                                     (2.81)

где n- и n+ - показатели преломления для волн, поляризованных по правому и левому кругу.

Фазовые задержки каждой из волн на пути l

                                                                      (2.82)

где n0 - показатель преломления среды при отсутствии магнитного поля.

Выйдя из оптически активной среды, циркулярно поляризованные волны складываются. Различные фазовые задержки для волн, поляризованных по правому и левому кругу, приводят к повороту вектора поляризации волны по отношению к вектору поляризации падающего линейно-поляризованного излучения.

Угол поворота плоскости поляризации на пути l

                    (2.83)

где Vl - постоянная Верде; Н - напряженность магнитного поля.

Обратимся теперь к контуру ВОГ. В нем даже в отсутствие магнитного поля существует взаимное двулучепреломление (см 2.2). Кроме того, взаимодействие магнитного поля индуцирует невзаимное круговое двулучепреломление, которое зависит от направления распространения луча. Это двулучепреломление суммируется с уже существующим взаимным двулучепреломлением в волокне. Именно комбинация двух двулучепреломлений в контуре В0Г определяет его чувствительность к внешнему магнитному полю. При отсутствии взаимного двулучепреломления невзаимная фазовая разность после интегрирования по замкнутому волоконному контуру будет равна нулю, поскольку интеграл по контуру тангенциальной составляющей внешнего магнитного поля равен нулю. Невзаимная фаза, накопленной в другой половине контура при учете реверса направлений распространения оптических колебаний по отношению к направлению магнитного поля. При наличии взаимного двулучепреломления эта компенсация будет неполной.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.