Реферат: Лекции по физике
Нижний катет прямоугольного треугольника, образованного радиусом фронта a, осью системы и радиусом r некоторого кольца на фронте волны, будет равен
.
Расстояние от источника света до края кольца и от него до точки наблюдения будет равен
.
При
преобразованиях мы пренебрегли слагаемым с четвертой степенью r
и воспользовались приближенным равенством .
Таким образом, разность хода “прямого” луча от S к точке наблюдения P и луча, проходящего через край кольца радиуса r
,
и разность фаз колебаний волн, проходящим по этим путям,
.
Наконец,
из условия получаем для внешнего
радиуса k-й зоны Френеля выражение:
.
Естественно, при a ® ¥ это выражение переходит в полученное нами ранее выражение для случая падения на отверстие плоской волны.
10.2. Обсуждение полученных результатов.
Зонная пластинка
Попробуем разобраться, к каким эффектам приводит дифракция на круглом отверстии. При этом не будем ни на минуту забывать, что спираль Френеля состоит из элементарных векторов, которые, соответственно, представляют колебания от элементарных колечек круглого фронта падающей волны. Вся спираль представляет колебания от полностью открытого фронта (k ® ¥), если открыта часть зон Френеля, “реализуется” лишь часть спирали. Амплитуда суммарных колебаний представляется длиной вектора, соединяющего начало спирали и ее конец.
0,5 1 1,5 2 2,5
E0
|
Проиллюстрируем эти слова. На рисунке показаны случаи, когда открыта половина первой зоны, первая зона, полторы зона, две и две с половиной. Иначе говоря, когда радиус круглого отверстия равен радиусу половине первой зоны Френеля, радиусу первой зоны и т.д.
1 2 3 4 5
|
Витки спирали для первых зон Френеля им будем считать окружностями. Поэтому на рисунке выписаны такие значения амплитуды суммарных колебаний E. Подсчет амплитуд колебаний производится приближенно, но для нас важно понимание причин изменения амплитуд при изменении радиуса отверстия, хотя бы и за счет некоторого снижения точности.
При суммировании амплитуд колебаний от первой, второй и т.д. зон Френеля мы должны получить амплитуду E0. Но если бы мы складывали только колебания от четных или только от нечетных зон Френеля, мы получили бы колебания с амплитудой, модуль которой намного превосходит величину E0. Действительно, вместо суммы членов знакопеременного ряда мы бы тогда складывали значения E одного знака.
Технически такое сложение осуществляется с помощью зонной пластинки. Она представляет собой систему непрозрачных концентрических колец, которые закрывают, например, нечетные зоны Френеля. Амплитуда колебаний в точке наблюдения при использовании такой пластинки сильно возрастает.
Зонная пластинка действует в этом случае подобно линзе, которая фокусирует свет в некоторой точке. Соответственно, для зонной пластинки может быть введено фокусное расстояние. На рисунке показана зонная пластинка, закрывающая нечетные зоны Френеля. Разность хода нарисованных лучей равна l, и амплитуда колебаний от открытых зон при одинаковых знаках складываются по модулю. Поэтому и получается большая интенсивность колебаний в точке наблюдения, фокусировка лучей.
зоны Френеля: 6 4 2
P b
|
Следующим
шагом в своего рода совершенствовании зонной пластинки является превращение ее
в прозрачную фазовую зонную пластинку. Вместо того, чтобы закрывать, например,
нечетные зоны Френеля, мы можем изменять на p фазу приходящих от них
колебаний. Тогда амплитуда колебаний в точке наблюдения примерно удвоится.
Чтобы достигнуть этого, необходимо изменить для них оптическую длину пут на
половину длинны волны, обеспечить выполнение условия , где d -
толщина фазовой пластины из материала с показателем преломления n.
10.3. Линза как дифракционный прибор
Фазовая пластинка представляется удивительным прибором. Ее способность фокусировать лучи основана на том, что она изменяет на p фазу колебаний от, например, четных зон Френеля E2k. В отсутствии пластинки эти колебания противоположны по фазе колебаниям от нечетных зон E2k-1, противоположны им по знаку. Естественно, суммарная амплитуда сильно увеличивается, происходит фокусировка. Но у нас имеется еще одна и еще более мощная возможность увеличить амплитуду колебаний - выпрямить сами дуги спирали и вместо хорд складывать длины этих дуг.
d 1 2 DL=rq/2 q»r/f
r f F
d0 |
Приходящие от элементарных колечек в пределах некоторой зоны Френеля колебания имеют различные фазы, что и проявляется в скручивании элементарных векторов на векторной диаграмме в дугу. Если же обеспечить нужное плавное изменение фазы колебаний в пределах отверстия, можно добиться желаемого результата - синфазности колебаний от всех элементарных колечек. Собственно, это и обеспечивается линзой при фокусировке лучей.
Действительно,
лучи 1 и 2 проходят одинаковые геометрические пути,
но один из них проходит путь d в материале с показателем
преломления n. В результате на этом участке он проходит больший
оптический путь, появляется оптическая разность хода .
Рассмотрим
теперь прохождение луча света через плоско-выпуклую линзу из материала с
показателем преломления n. Луч от отмеченной пунктиром плоскости
до выпуклой поверхности линзы проходит путь и в материале линзы
. Таким
образом, на этом участке оптическая длина пути будет
. С другой стороны
от края колечка на плоской стороне линзы до фокуса луч пройдет путь
. Чтобы в
фокусе колебания волн, проходящих по путям всех лучей, складывались,
необходимо, чтобы этот путь на зависел от радиуса колечка:
;
.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23