Реферат: Лекции по физике
Теперь можно говорить о некотором распределении стоячих волн по оси частот - они могут принимать лишь некоторые дискретные значения.
Перейдем в декартово пространство, в котором по осям отложены значения составляющих векторов . Концы векторов, удовлетворяющих условию стоячей волны, будут иметь координаты . Это позволяет нам говорить о плотности таких точек в k - пространстве: поскольку , элементарный объем на одну точку (конец вектора ) . Равная обратной величине элементарного объема, плотность точек Nk в k - пространстве оказывается величиной постоянной: .
Собственно, нас интересуют количества векторов в модулем от k до k+Dk. Чтобы подсчитать это количество, выберем элементарный объем в k - пространстве в виде тонкого шарового слоя радиуса k и толщиной Dk и умножим его на плотность точек:
.
Теперь нам надо проделать еще такие операции. Во-первых, перейдем от волновых векторов k к частотам w: . Затем нам надо умножить полученное число на 2, поскольку имеется два взаимно перпендикулярных направления колебаний - это будут разные стоячие волны. Тогда на единицу объема мы получаем такое количество волн с частотой w:
.
Y
kX<0 kX>0 kY>0 X kY<0 |
Теперь попробуем понять, что мы, собственно, получили. Это выражение дает нам число волн с частотой w в единице объема. Но это еще не количество стоячих волн. При каждом отражении волна изменяет направление распространения, но это остается та же волна с частотой w. При нашем же подсчете они считались различными волнами - с определенным модулем волнового числа k и независимо от направления вектора . Поэтому полученное количество волн нам надо разделить на 8 и вот почему.
При каждом отражении изменяется знак одной из проекций вектора . Как видно из рисунка, изменение знаков проекций kX и kY дает четыре возможные направления вектора . Но остается еще возможность изменения знака kZ - итого получается 8 возможных направлений распространения (одной и той же) волны с частотой w. Таким образом, переходя к дифференциалам, мы получаем нужное выражение:
.
Эти стоячие волны заманчиво трактовать как колебательные степени свободы для лучистой энергии. Тогда на каждую стоячую волну пришлась бы порция энергии kT. Но здесь нас ждет большая неприятность: количество стоячих волн (вплоть до w=¥) неограничено, плотность энергии оказывается бесконечной, что, конечно, никак не может отвечать реальности.
Тем не менее не стоит приходить в отчаяние. Нам еще придется сделать некоторые уточнения, связанные с более глубоким пониманием физики. Тогда мы и получим разумный результат.
12.4. Формула Планка
Изучение теплового равновесного излучения как и других явлений привело физиков к идее квантования. Каждой колебательной степени свободы пришлось приписать энергию в несколько энергетических квантов - порций энергии величиной ћw.
Количество стоячих волн с энергией определяется распределением Больцмана:
.
С увеличением частоты количество волн с большой энергией уменьшается и тем самым снимается проблема бесконечной плотности энергии.
Подсчитаем среднюю энергию стоячей волны с частотой w:
.
Мы ввели обозначение .
Выражение под знаком логарифма представляет собой сумму членов бесконечной геометрической прогрессии со знаменателем . Поэтому средняя энергия стоячей волны
.
Умножив это значение на количество волн в интервале dw, получим энергию в этом интервале:
,
мы получим для плотности лучистой энергии выражение
,
которое носит название формулы Планка.
Лекция 16
12.5. Закон Стефана-Больцмана и закон смещения Вина
Мы с Вами получили связь между плотностью лучистой энергии и испускательной способностью абсолютно черного тела
и формулу Планка для плотности энергии
.
Это позволяет нам записать выражение для испускательной способности абсолютно черного тела:
.
Это выражение также называют формулой Планка. С ее помощью можно получить закон Стефана-Больцмана - связь энергетической светимости абсолютно черного тела с температурой:
.
Произведем замену переменной: введем . Тогда выражение для энергетической светимости примет вид:
.
Интеграл в правой части выражения равен . Таким образом,
; .
Величина s называется постоянной Стефана-Больцмана и ее значение, подсчитанное с помощью формулы Планка, весьма точно совпадает с определенным экспериментально.
Закон смещения Вина связывает температуру и длину волны, на которую приходится максимум излучения абсолютно черного тела:
; .
Чтобы получить выражение для b, нужно исследовать функцию
на экстремум. Принципиальных проблем в этой связи не возникает, но вычисления оказываются достаточно громоздкими. И тем не менее, учитывая огромную важность формулы Планка, нам следует заняться этими вычислениями.
Прежде всего перейдем в функции от переменной к переменной l. Проследите внимательно за выкладками:
.
Мы ввели обозначение . Поскольку
,
мы получаем не такое уж сложное выражение:
.
Теперь займемся дифференцированием. Нам необходимо решить уравнение
;
.
Решить это уравнение “напрямую” нам не удастся. Поэтому перепишем его в виде
и решим методом последовательных приближений, в данном случае весьма эффективным.
В качестве нулевого приближения напрашивается значение . Тогда
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23