Шпаргалка: Лекции по количественной оценке информации
Решение:
Остаток не нулевой, комбинация бракуется. Указать ошибочные разряды при трехкратных искажениях такие коды не могут.
III. Циклические коды, исправляющие две и большее количество ошибок,
Методика построения циклических кодов с отличается от методики построения циклических кодов с только в выборе образующего многочлена. В литературе эти коды известны как коды БЧХ (первые буквы фамилий Боуз, Чоудхури, Хоквинхем - авторов методики построения циклических кодов с ).
Построение образующего многочлена зависит, в основном, от двух параметров: от длины кодового слова п. и от числа исправляемых ошибок s. Остальные параметры, участвующие в построении образующего многочлена, в зависимости от заданных и могут быть определены при помощи таблиц и вспомогательных соотношений, о которых будет сказано ниже.
Для исправления числа ошибок еще не достаточно условия, чтобы между комбинациями кода минимальное кодовое расстояние . необходимо также, чтобы длина кода удовлетворяла условию
(79)
при этом п всегда будет нечетным числом. Величина h определяет выбор числа контрольных символов и связана с и s следующим соотношением:
(80)
С другой стороны, число контрольных символов определяется образующим многочленом и равно его степени. При больших значениях h длина кода п становится очень большой, что вызывает вполне определенные трудности при технической реализации кодирующих и декодирующих устройств. При этом часть информационных разрядов порой остается неиспользованной. В таких случаях для определения h удобно пользоваться выражением
(81)
где является одним из сомножителей, на которые разлагается число п.
Соотношения между , С и h могут быть сведены в следующую таблицу
№ п/п | h | C | |
1 2 3 4 5 6 7 8 9 10 |
3 4 5 6 7 8 9 10 11 12 |
7 15 31 63 127 255 511 1023 2047 4095 |
1 5; 3 1 7; 3; 3 1 17; 5; 3 7; 3; 7 31; 11; 3 89; 23 3; 3; 5; 7; 13 |
Например, при h = 10 длина кодовой комбинации может быть равна и 1023 и 341 (С = 3), и 33 (С =31), и 31 (С = 33), понятно, что п не может быть меньше Величина С влияет на выбор порядковых номеров минимальных многочленов, так как индексы первоначально выбранных многочленов умножаются на С.
Построение образующего многочлена производится при помощи так называемых минимальных многочленов , которые являются простыми неприводимыми многочленами (см. табл. 2, приложение 9). Образующий многочлен представляет собой произведение нечетных минимальных многочленов и является их наименьшим общим кратным (НОК). Максимальный порядок определяет номер последнего из выбираемых табличных минимальных многочленов
(82)
Порядок многочлена используется при определении числа сомножителей . Например, если s = 6, то . Так как для построения используются только нечетные многочлены, то ими будут: старший из них имеет порядок . Как видим, число сомножителей равно 6, т. е. числу исправляемых ошибок. Таким образом, число минимальных многочленов, участвующих в построении образующего многочлена,
(83)
а старшая степень
(84)
( указывает колонку в таблице минимальных многочленов, из которой обычно выбирается многочлен для построения ).
Степень образующего многочлена, полученного в результате перемножения выбранных минимальных многочленов,
(85)
В общем виде
(86)
Декодирование кодов БЧХ производится по той же методике, что и декодирование циклических кодов с . Однако в связи с тем, что практически все коды БЧХ представлены комбинациями с , могут возникнуть весьма сложные варианты, когда для обнаружения и исправления ошибок необходимо производить большое число циклических сдвигов. В этом случае для облегчения можно комбинацию, полученную после -кратного сдвига и суммирования с остатком, сдвигать не вправо, а влево на циклических сдвигов. Это целесообразно делать только при .
ТЕМА 8. СЖАТИЕ ИНФОРМАЦИИ
Сжатие информации представляет собой операцию, в результате которой данному коду или сообщению ставится в соответствие более короткий код или сообщение[19].
Сжатие информации имеет целью - ускорение и удешевление процессов механизированной обработки, хранения и поиска информации, экономия памяти ЭВМ. При сжатии следует стремиться к минимальной неоднозначности сжатых кодов при максимальной простоте алгоритма сжатия. Рассмотрим наиболее характерные методы сжатия информации.
Сжатие информации делением кода на части, меньшие некоторой наперед заданной величины А, заключается в том, что исходный код делится на части, меньшие А, после чего полученные части кода складываются между собой либо по правилам .двоичной арифметики, либо по модулю 2. Например, исходный код 101011010110; A = 4
Сжатие информации с побуквенным сдвигом в каждом разряде [5], как и предыдущий способ, не предусматривает восстановления сжимаемых кодов, а применяется лишь для сокращения адреса либо самого кода сжимаемого слова в памяти ЭВМ.
Предположим, исходное слово «газета» кодируется кодом, в котором длина кодовой комбинации буквы l = 8:
Г - 01000111; а - 11110000; з - 01100011; е - 00010111; т - 11011000.
Полный код слова «Газета»
010001111111000001100011000101111101100011110000.
Сжатие осуществляется сложением по модулю 2 двоичных кодов букв сжимаемого слова с побуквенным сдвигом в каждом разряде.
Допустимое количество разрядов сжатого кода является вполне определенной величиной, зависящей от способа кодирования и от емкости ЗУ. Количество адресов, а соответственно максимальное количество слов в выделенном участке памяти машины определяется из следующего соотношения
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10