RSS    

   Реферат: Отрывок из учебника по теории систем и системному анализу

Основным противоречием, которое приходится разрешать в замкнутых системах, является проблема возрастания энтропии. Согласно второму закону термодинамики по мере движения зам­кнутой системы к состоянию равновесия она стремится к мак­симальной энтропии (дезорганизации), соответствующей мини­мальной информации. Открытые системы могут изменить это стремление к максимальной энтропии, получая внешнюю по от­ношению к системе свободную энергию, и этим поддерживают организацию.


закон функционирования Fs, и в зависимости от целей модели­рования входной сигнал x(t) может быть разделен на три под­множества:

•   неуправляемых входных сигналов xt е X, I = 1, ... , kx, пре­
образуемых рассматриваемым элементом;

•   воздействий внешней среды «v e N, v = 1, ... , kn, представ­
ляющих шум, помехи;

•   управляющих сигналов (событий) ит е U,   т = 1....... ku,

появление которых приводит к переводу элемента из одного со­стояния в другое.

Иными словами, элемент - это неделимая наименьшая функци­ональная часть исследуемой системы, включающая < х, п, и, у, f^> и представляемая как «черный ящик» (рис. 1.5). Функциональную модель элемента будем представлять как y(t) = Fs(x, п, и, t).

Входные сигналы, воздействия внешней среды и управляю­щие сигналы являются независимыми переменными. При стро­гом подходе изменение любой из независимых переменных вле­чет за собой изменение состояния элемента системы. Поэтому в дальнейшем будем обобщенно обозначать эти сигналы как x(t), a функциональную модель элемента - как y(t) = Fs(x(t)), если это не затрудняет анализ системы.

Выходной сигнал y(t), в свою очередь, представляют совокуп­ностью характеристик элемента j>. e Y,j = l,...,k


 


1.2.4.

ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ СИСТЕМНОГО АНАЛИЗА

Для оперирования основными понятиями системного анали­за будем придерживаться следующих словесно-интуитивных или формальных определений.

Элемент - некоторый объект (материальный, энергетичес­кий, информационный), обладающий рядом важных свойств и реализующий в системе определенный закон функционирования F8, внутренняя структура которого не рассматривается.

Формальное описание элемента системы совпадает с описа­нием подмодели Ч* . Однако функционалы g и / заменяются на


Рис. 1.5. Элемент системы как «черный ящик»


3-20


34


Глава 1


Основы системного анализа


35


 


Под средой понимается множество объектов S 'вне данно­го элемента (системы), которые оказывают влияние на элемент (систему) и сами находятся под воздействием элемента (системы),

Правильное разграничение исследуемого реального объекта и среды является необходимым этапом системного анализа. Часто в системном анализе выделяют понятие «суперсистема» - часть внеш­ней среды, для которой исследуемая система является элементом.

Подсистема - часть системы, выделенная по определенно­му признаку, обладающая некоторой самостоятельностью и до­пускающая разложение на элементы в рамках данного рассмот­рения.

Система может быть разделена на элементы не сразу, а после­довательным расчленением на подсистемы - совокупности эле­ментов. Такое расчленение, как правило, производится на осно­ве определения независимой функции, выполняемой данной со­вокупностью элементов совместно для достижения некой частной цели, обеспечивающей достижение общей цели системы. Подси­стема отличается от простой группы элементов, для которой не выполняется условие целостности.

Последовательное разбиение системы в глубину приводит к иерархии подсистем, нижним уровнем которых является элемент. Типичным примером такого разбиения является структура Пас­каль-программы. Так, например, тело основной программы вклю­чает модули - подсистемы первого уровня, модули включают функции и процедуры - подсистемы второго уровня, функции и процедуры включают операнды и операторы - элементы системы.

Характеристика -то, что отражает некоторое свойство элемента системы.

Характеристика v задается кортежем ^. = < name, {value} >, где пате - имя 7-й характеристики, {value} - область допустимых значений. Область допустимых значений задается перечислени­ем этих значений или функционально, с помощью правил вычис­ления (измерения) и оценки.

Характеристики делятся на количественные и качественные в зависимости от типа отношений на множестве их значений.

Если на множестве значений заданы метризованные отноше­ния, когда указывается не только факт выполнения отношения p(W, у?), н° также и степень количественного превосходства, то


характеристика является количественной. Например, размер эк­рана (см), максимальное разрешение (пиксель) являются количе­ственными характеристиками мониторов, поскольку существу­ют шкалы измерений этих характеристик в сантиметрах и пиксе­лях соответственно, допускающие упорядочение возможных значений по степени количественного превосходства: размер эк­рана монитора у! больше, чем размер экрана монитора _у А на 3 см (аддитивное метризованное отношение) или максимальное раз­решение у/1 выше, чем максимальное разрешение у?,в два раза (мультипликативное метризованное отношение).

Если пространство значений не метрическое, то характерис­тика называется качественной. Например, такая характеристика монитора, как комфортное разрешение, хотя и измеряется в пик­селях, является качественной. Поскольку на комфортность влия­ют мерцание, нерезкость, индивидуальные особенности пользо­вателя и т.д., единственным отношением на шкале комфортнос­ти является отношение эквивалентности, позволяющее различить мониторы как комфортные и некомфортные без установления количественных предпочтений.

Количественная характеристика называется параметром.

Часто в литературе понятия «параметр» и «характеристика» отождествляются на том основании, что все можно измерить. Но в общем случае полезно разделять параметры и качественные характеристики, так как не всегда возможно или целесообразно разрабатывать процедуру количественной оценки какого-либо свойства.

Характеристики элемента являются зависимыми переменны­ми и отражают свойства элемента. Под свойством понима­ют сторону объекта, обусловливающую его отличие от других объектов или сходство с ними и проявляющуюся при взаимодей­ствии с другими объектами.

Свойства задаются с использованием отношений одного из основных математических понятий, используемых при анализе и обработке информации. На языке отношений единым образом можно описать воздействия, свойства объектов и связи между ними, задаваемые различными признаками. Существует несколь­ко форм представления отношений: функциональная (в виде фун­кции, функционала, оператора), матричная, табличная, логичес­кая, графовая, представление сечениями, алгоритмическая (в виде словесного правила соответствия).

з-


36


Глава 1


Основы системного анализа


37


 


Свойства классифицируют на внешние, проявляющиеся в фор­ме выходных характеристик yt только при взаимодействии с вне­шними объектами, и внутренние, проявляющиеся в форме пере­менных состояния z, при взаимодействии с внутренними элемен­тами рассматриваемой системы и являющиеся причиной внешних свойств.

Одна из основных целей системного анализа - выявление внут­ренних свойств системы, определяющих ее поведение.

По структуре свойства делят на простые и сложные (интег­ральные). Внешние простые свойства доступны непосредствен­ному наблюдению, внутренние свойства конструируются в нашем сознании логически и не доступны наблюдению.

Следует помнить о том, что свойства проявляются только при взаимодействии с другими объектами или элементами одного объекта между собой.

По степени подробности отражения свойств выделяют гори­зонтальные (иерархические) уровни анализа системы. По харак­теру отражаемых свойств выделяют вертикальные уровни ана­лиза - аспекты. Этот механизм лежит в основе утверждения о том, что для одной реальной системы можно построить множество абстрактных систем.

При проведении системного анализа на результаты влияет фактор времени. Для своевременного окончания работы необхо­димо правильно определить уровни и аспекты проводимого ис­следования. При этом производится выделение существенных для данного исследования свойств путем абстрагирования от несу­щественных по отношению к цели анализа подробностей.

Формально свойства могут быть представлены также и в виде закона функционирования элемента.

Законом функционирования Fs, описывающим процесс функ­ционирования элемента системы во времени, называется зависи­мость y(t) = Fs( x, n, и, t).

Оператор Fs преобразует независимые переменные в зависи­мые и отражает поведение элемента (системы) во времени - про­цесс изменения состояния элемента (системы), оцениваемый по степени достижения цели его функционирования. Понятие пове­дения принято относить только к целенаправленным системам и оценивать по показателям.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.