Реферат: Отрывок из учебника по теории систем и системному анализу
Разновидностью методов дерева целей и Дельфи является метод PA TTERN (Planning Assistance Through Technical Evaluation of Relevance Numbers помощь планированию посредством относительных показателей технической оценки), разработанный для повышения эффективности процессов принятия решений в области долгосрочной научно-технической ориентации крупной промышленной фирмы.
Сущность метода PATTERN заключается в следующем. Исходя из сформулированных целей потребителей продукции фирмы на прогнозируемый период осуществляется развертывание дерева целей. Для каждого уровня дерева целей вводится ряд критериев. С помощью экспертной оценки определяются веса критериев и коэффициенты значимости, характеризующие важность вклада целей в обеспечение критериев. Значимость некоторой цели определяется коэффициентом связи, представляющим сумму произведений всех критериев на соответствующие коэффициенты значимости. Общий коэффициент связи некоторой цели (относительно достижения цели высшего уровня) определяется путем перемножения соответствующих коэффициентов связи в направлении вершины дерева.
2.4.6. МОРФОЛОГИЧЕСКИЕ МЕТОДЫ
Основная идея морфологических методов систематически находить все мыслимые варианты решения проблемы или реализации системы путем комбинирования выделенных элементов или их признаков. В систематизированном виде морфологический подход разработан и применен впервые швейцарским астрономом Ф. Цвикки и долгое время был известен как метод Цвикки.
Цвикки предложил три метода морфологического исследования:
1. Метод
систематического покрытия поля (МСПП), основан
ный на выделении так
называемых опорных пунктов знания в
любой исследуемой области и использовании
для заполнения поля
некоторых сформулированных принципов
мышления.
2.
Метод
отрицания и конструирования (МОК), заключаю
щийся в
том, что на пути конструктивного прогресса стоят дог
мы и
компромиссные ограничения, которые есть смысл отрицать,
и
следовательно, сформулировав некоторые предложения, полез
но
заменить их затем на противоположные и использовать при
проведении
анализа.
3.
Метод
морфологического ящика (ММЯ), нашедший наи
более
широкое распространение. Идея ММЯ состоит в том, что
бы
определить все мыслимые параметры, от которых может за
висеть решение проблемы, представить их в виде матриц-строк,
а затем
определить в этом морфологическом матрице-ящике все
возможные
сочетания параметров по одному из каждой строки.
Полученные таким образом варианты могут снова подвергаться
оценке
и анализу в целях выбора наилучшего. Морфологический
ящик
может быть не только двумерным.
Построение и исследование по методу морфологического ящика проводится в пять этапов.
Этап 1. Точная формулировка поставленной проблемы.
Этап 2. Выделение показателей Pt, от которых зависит решение проблемы. По мнению Ф. Цвикки, при наличии точной формулировки проблемы выделение показателей происходит автоматически.
Этап 3. Сопоставление показателю Pf его значений ;? А и сведение этих значений в таблицу, которую Цвикки и называет морфологическим ящиком.
Набор значений различных показателей (по одному значению из каждой строки) представляет собой возможный вариант решения данной проблемы (например, вариант {р1,, р22, ... , pkn}, обозначенный на рис. 2.7). Такие наборы называются вариантами решения или просто вариантами. Общее число вариантов, содержащихся в морфологической таблице, равно N = К\К2 ... Кп, где Kt (i = 1, 2, ... , и) - число значений /-го показателя.
д—20
24 |
Глава 1
ского пространства обычно рассматривается временной интервал (0, °°).
Аксиома 2. Пространство состояний Z содержит не менее двух элементов. Эта аксиома отражает естественное представление о том, что сложная система может находиться в разных состояниях.
Аксиома 3. Система обладает свойством функциональной эмерджентности .
Эмерджентностъ (целостность) - это такое свойство системы S, которое принципиально не сводится к сумме свойств элементов, составляющих систему, и не выводится из них:
т
1
где yt - i-я характеристика системы S; т - общее количество характеристик.
При таком рассмотрении система является совокупностью моделей и, главное, отражает семантику предметной области в отличие от неинтерпретированных частных математических моделей. Другими словами, система - это совокупность взаимосвязанных элементов, обладающая интегративными свойствами (эмерджентностью), а также способ отображения реальных объектов.
В рамках изучаемой дисциплины под сложной кибернетической системой понимается реальный объект с управлением и его отображение в сознании исследователя как совокупность моделей, адекватная решаемой задаче.
123 КЛАССИФИКАЦИЯ СИСТЕМ
Системы принято подразделять на физические и абстрактные, динамические и статические, простые и сложные, естественные и искусственные, с управлением и без управления, непрерывные и дискретные, детерминированные и стохастические, открытые и замкнутые.
Основы системного анализа
Деление систем на физические и абстрактные позволяет различать реальные системы (объекты, явления, процессы) и системы, являющиеся определенными отображениями (моделями) реальных объектов.
Для реальной системы может быть построено множество систем - моделей, различаемых по цели моделирования, по требуемой степени детализации и по другим признакам.
Например, реальная ЛВС, с точки зрения системного администратора, - совокупность программного, математического, информационного, лингвистического, технического и других видов обеспечения, с точки зрения противника, - совокупность объектов, подлежащих разведке, подавлению (блокированию), уничтожению, с точки зрения технического обслуживания, - совокупность исправных и неисправных средств.
Деление систем на простые и сложные (большие) подчеркивает, что в системном анализе рассматриваются не любые, а именно сложные системы большого масштаба. При этом выделяют структурную и функциональную (вычислительную) сложность.
Общепризнанной границы, разделяющей простые, большие и сложные системы, нет. Однако условно будем считать, что сложные системы характеризуются тремя основными признаками: свойством робастности, наличием неоднородных связей и эмерджентностью.
Во-первых, сложные системы обладают свойством робастности - способностью сохранять частичную работоспособность (эффективность) при отказе отдельных элементов или подсистем. Оно объясняется функциональной избыточностью сложной системы и проявляется в изменении степени деградации выполняемых функций, зависящей от глубины возмущающих воздействий. Простая система может находиться не более чем в двух состояниях: полной работоспособности (исправном) и полного отказа (неисправном).
Во-вторых, в составе сложных систем кроме значительного количества элементов присутствуют многочисленные и разные по типу (неоднородные) связи между элементами. Основными типами считаются следующие виды связей: структурные (в том числе иерархические), функциональные, каузальные (причинно-следственные, отношения истинности), информационные, пространственно-временные. По этому признаку будем отличать сложные
26 |
Глава 1
системы от больших систем, представляющих совокупность однородных элементов, объединенных связью одного типа.
В-третьих, сложные системы обладают свойством, которое отсутствует у любой из составляющих ее частей. Это интегратив-ность (целостность), или эмерджентность. Другими словами, отдельное рассмотрение каждого элемента не дает полного представления о сложной системе в целом. Эмерджентность может достигаться за счет обратных связей, играющих важнейшую роль в управлении сложной системой.
Считается, что структурная сложность системы должна быть пропорциональна объему информации, необходимой для ее описания (снятия неопределенности). В этом случае общее количество информации о системе S, в которой априорная вероятность появленияу'-ro свойства равна р(у), определяется известным соотношением для количества информации
I(Y) = -Ip(yj)log2p(yj). (1.6)
Это энтропийный подход к дескриптивной (описательной) сложности.
Одним из способов описания такой сложности является оценка числа элементов, входящих в систему (переменных, состояний, компонентов), и разнообразия взаимозависимостей между ними.
В общей теории систем утверждается, что не существует систем обработки данных, которые могли бы обработать более чем 2-10547 бит в секунду на грамм своей массы. При этом компьютерная система, имеющая массу, равную массе Земли, за период, равный примерно возрасту Земли, может обработать порядка 10593 бит информации (предел Бреммермана). Задачи, требующие обработки более чем 10593 бит, называются трансвычислительными. В практическом плане это означает, что, например, полный анализ системы из 110 переменных, каждая из которых может принимать 7 разных значений, является трансвычислительной задачей.
Для оценки сложности функционирования систем применяется алгоритмический подход. Он основан на определении ресурсов (время счета или используемая память), используемых в системе при решении некоторого класса задач. Например, если функция времени вычислений является полиномиальной функцией от входных данных, то мы имеем дело с полиномиальным по вре-
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17