RSS    

   Реферат: Лекции по гидравлике

Плотность капельных жидкостей и газов зависит от температуры и давления. Зави­симость величины плотности жидкости и газа при температуре отличной от 20 °С опреде­ляется по формуле Д.И. Менделеева:

где: р и р20 - плотности жидкости (газа) при температурах соответственно

ГиГо=20°С,

βi      - коэффициент температурного расширения.

Исключительными особенностями обладает вода, максимальная плотность которой отмечается при 4 °С

Плотность воды при различных температурах и атмосферном давлении

Т,°С

р кг/м

Т,°С

р кг/м

Т, °С

р кг/м

-10 998,15 10 999,73 200 869,00
-5 999,30 20 998,23 250 794,00
0 999,87 50 988,07 300 710,00
2 999,97 100 958,38 350 574,00
4 1000,00 150 917,30 374,15 307,00

Плотность капельных жидкостей в зависимости от давления может быть определена в соответствии с уравнением состояния упругой жидкости:

 5

•   где:         - плотность капельной жидкости при атмосферном давлении рат ,

 - коэффициент объёмного сжатия капельной жидкости.

Плотность идеальных газов при давлениях отличных от атмосферного можно опре­делить по известному закону газового состояния Менделеева-Клайперона:

давление,

удельный объём газа

универсальная газовая постоянная

температура газа

при

Кроме абсолютной величины плотности капельной жидкости, на практике пользуют­ся и величиной её относительной плотности, которая представляет собой отношение ве-

личины абсолютной плотности жидкости к плотности чистой воды при температуре 4 °С:  . Относительная плотность жидкости - величина безразмерная.

Имеется аналогичная характеристика и для газов. Под относительной плотностью га­за (по воздуху) понимается отношение величины абсолютной плотности газа к плотности воздуха при стандартных условиях.

О плотности жидкости косвенно можно судить по весовому показателю, - удельному весу жидкости. Под удельным весом жидкости (газа) понимается вес единицы объёма жидкости (газа):

G     вес жидкости (газа),

где:                     ..                                              

W    объем, занимаемый жидкостью (газом).

Связь между плотностью и удельным весом жидкости такая же как и между массой тела и её весом:

Размерность удельного веса жидкости в системе единиц СИ н/м 3 , удельный вес чис­той воды составляет 9810 н/м3. Аналогично вводится понятие об относительном удельном весе жидкости,

На практике величина плотности жидкости определяется с помощью простейшего прибора - ареометра. По глубине погружения прибора в жидкость судят о её плотности.

Упругость. Капельные жидкости относятся к категории плохо сжимаемых тел. При­чины незначительных изменений объёма жидкости при увеличении давления очевидны, т.к. межмолекулярные расстояния в капельной жидкости малы и при деформации жидко­сти приходится преодолевать значительные силы отталкивания, действующие между мо­лекулами, и даже испытывать влияние сил, действующих внутри атома. Тем не менее, сжимаемость жидкостей в 5 - 10 раз выше, чем сжимаемость твёрдых тел, т.е. можно счи­тать, что все капельные жидкости обладают упругими свойствами.

Оценка упругих свойств жидкостей может осуществляться по ряду специальных па­раметров.

коэффициент объёмного сжатия жидкости представляет собой относительное изменение объёма жидкости при изменении давления на единицу. По суще­ству это известный закон Гука для модели объёмного сжатия:

начальный объём жидкости, (при начальном давлении),

 коэффициент объёмного (упругого) сжатия жидкости.

Считается,  что коэффициент объёмного  сжатия жидкости  зависит с достаточно большой точностью только от свойств самой жидкости и не зависит от внешних условий. Коэффициент объёмного сжатия жидкости имеет размерность обратную размерности дав­ления, т.е. м/н.

адиабатический модуль упругости жидкости К, зависящий от термодинами­ческого состояния жидкости (величина обратная коэффициенту объёмного сжатия жидкости):                                                                                       ,

Величина модуля упругости жидкости имеет размерность напряжения, т.е. н/м .

об упругих свойствах капельной жидкости можно судить по скорости рас­пространения продольных волн в жидкой среде, которая равна скорости зву­ка в покоящейся жидкости:

С упругими свойствами капельных жидкостей также связаны представления о со­противлении жидкостей растяжению. Теоретически в чистых жидкостях могут быть дос­тигнуты довольно значительные напряжения. Однако, в реальных жидкостях при наличии в них даже весьма незначительных примесей (твёрдые частицы, газ) уменьшает величину сопротивления жидкости растяжению практически до 0. По этой причине можно считать, что в капельных жидкостях напряжения растяжению невозможны.

Об упругих свойствах газов можно судить исходя из классического уравнения Пуас­сона:

 ;

где:        п         - показатель адиабаты равный отношению теплоёмкости газа при по­стоянном давлении к величине теплоёмкости газа при постоянном объёме.

Для оценки упругих свойств движущегося газа пользуются не абсолютной величи­ной скорости звука сзв, а отношением скорости потока газа v к скорости звука в газе. Этот показатель носит название числа Маха;

Вязкость. При движении реальных (вязких) жидкостей в них возникают внутренние напряжения, обусловленные силами внутреннего трения жидкости. Природа этих сил до­вольно сложна; возникающие в жидкости напряжения связаны с процессом переноса им­пульса(вектора массовой скорости движения жидкости). При этом возникающие в жидкости напряжения обусловлены двумя факторами: напряжениями, возникающими при деформации сдвига и напряжениями, возникающими при деформации объёмного сжатия.

Наличие сил вязкостного трения в движущейся жидкости подтверждается простым и наглядным опытом. Если в цилиндрическую ёмкость, заполненную жидкостью опустить вращающийся цилиндр, то вскоре придёт в движение (начнёт вращаться вокруг своей оси в том же направлении, что и вращающийся цилиндр) и сама ёмкость с жидкостью. Этот факт свидетельствует о том, что вращательный момент от вращающегося цилиндра был передан через вязкую жидкость самой ёмкости, заполненной жидкостью.

Напряжения, возникающие при деформации сдвига согласно гипотезе Ньютона про­порциональны градиенту скорости в движущихся слоях жидкости, а сила трения между слоями движущейся жидкости будет пропорциональна площади поверхности движущихся слоев жидкости:

где:сила трения между слоями движущейся жидкости,

- площадь поверхности слоев движущейся жидкости,

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.