RSS    

   Реферат: Лекции по гидравлике

При увеличении А/г размеры ламинарной зоны будут постепенно увеличиваться за счёт уменьшения размеров ядра течения пока структурный режим не перейдёт в полно­стью ламинарный режим движения жидкости. В дальнейшем ламинарный режим посте­пенно  сменится  турбулентным  режимом движения жидкости.

Для определения закона распределе­ния скоростей по сечению потока при структурном режиме движения жидкости запишем некоторую функцию для каса­тельных напряжений в соответствии с  формулой Бингама:

Тогда распределение скоростей по сечению трубы можно выразить следующим об­разом:

 ?

где:    - касательное напряжение на стенке трубы радиуса,

 - скорость жидкости на расстоянииот центра трубы. После интегрирования этого уравнения получим:

И окончательно:

Для определения скорости в ядре течения примем, где - радиус ядра течения

(структурной части потока жидкости). Тогда величина скорости в этом ядре течения (ско­рости в ядре течения одинаковые равны):                                        '

Расход жидкости при структурном движении можно определить, используя извест­ные соотношения дл круглой трубы:

Интегрируя уравнение в пределах от      до, получим:

 5                       f

Последнее уравнение, известное как формула Букингама, можно упростить:

где:         - разность давлений при начале движения жидкости, когда каса-

тельнве напряжения в ней достигают величины касательного напряже­ния сдвига. Если пренебречь величиной второго члена ввиду его малости, получим:

 * где:    - обобщённый критерий Рейнольдса.

Комплексный параметр= Sen носит название числа Сен-Венана.

Таким образом, при расчётах движения вязкопластических жидкостей можно поль­зоваться уравнениями для ньютоновских жидкостей, заменяя в уравнениях величину чис­ла Рейнольдса Re на обобщённый критерий Рейнольдса

Турбулентный режим течения жидкости. Характер течения вязкопластических жид­костей существенно не отличается от турбулентного потока ньютоновских жидкостей. Отличие состоит в количественных соотношениях между величинами коэффициентов трения и числом Рейнольдса. Так коэффициент трения может быть выражен как функция обобщённого числа Рейнольдса (в общем виде) следующим образом:

где: В и п - некоторые параметры, устанавливаемые по данным экспериментов. Так по данным экспериментов Б.С. Филатова величины коэффициентов В и п принимают­ся следующими:

- для неутяжелённого глинистого раствора          В = 0,1 и п = 0,15,

- для утяжелённого глинистого раствора    В = 0,0025 и п = -0,2.

Для расчёта трубопроводов при ждижении по ним глинистых и цементных растворов можно пользоваться формулой Б.И. Мительмана:

 при: Re* =2500-40000. 12.3. Движение вязкопластичных жидкостей в открытых каналах

В практике работы горных предприятий не редки случаи, когда приходится транс­портировать неньютоновские жидкости в безнапорных потоках (самотёком), в лотках, по желобным системам. Характер течения вязкопластичных жидкостей в открытых каналах при структурном режиме идентичен аналогичному и напорному потокам такой жидкости в круглых трубах. Т.е. при структурном режиме течения жидкости также выделяется цен­тральное ядро течения, где жидкость движется как твёрдое тело, сохраняя свою первонв-чальную структуру. Ядро течения подстилается непрерывным ламинарным слоем жидко­сти. Течению таких жидкостей по открытым каналам прямоугольного профиля посвяще­ны работы Р.И. Шищенко. По данным его исследований расход вязкопластичной жидко­сти при структурном режиме движения может быть определён по приближённой формуле:

где:    - скорость течения ядра потока

 - площадь живого сечения канала шириной b и глубиной заполнения h,

 - гидравлический уклон, соответствующий началу течения жидкости,

/ - уклон дна канала,

 - гидравлический радиус живого сечения потока. 12.4. Движение неньютоновских жидкостей, подчиняющихся степенному реологическому закону, по трубам

Для жидкостей, подчиняющихся степенному реологическому закону, функция на­пряжения сдвига будет иметь следующий вид:

Тогда распределение скоростей в сечение потока будет соответствовать следующей зависимости:

Интегрируя это уравнение, найдём:

 , или:

Отсюда можно получить выражение для расхода жидкости:

Отсюда определим величину перепада давления, обеспечивающую движение жидко­сти и соответствующую величину потерь напора на трение.

Сопоставляя полученное выражение с формулой Дарси-Вейсбаха, найдём величину коэффициента трения и обобщённый критерий Рейнольдса:

13. Гидравлическая теория смазки 13.1. Ламинарное движение жидкости в узких щелях

В большинстве машин и механизмов с целью снижения трения между движущимися узлами используются принципы гидравлической смазки, когда малые зазоры между со­прикасающимися элементами заполняются низковязкой или другой жидкостью. В данном случае процесс сухого трения между твердыми движущимися телами заменяется сколь­жением. Гидравлическая смазка используется также и в случаях, когда необходимо вы­полнить изоляцию зазоров от проникновения через них жидкостей. Эти чисто практиче­ские задачи связаны с теорией течения жидкости в узких щелях, разработанных Буссинэ и Н.П. Петровым.

Эту задачу рассмотрим на классическом уровне. Возьмём две плоские одинаковые

пластины, расположенные параллельно друг другу на малом расстоянии друг от друга. Эти пластины образуют межды собой тонкую щель (зазор) d.

Щель будет считаться тонкой, если её ширина d во много раз меньше размеров пла­стин и, где L и В - размеры пластины. Проведем в потоке щели два парал­лельных друг другу сечения на расстоянии / и выделим малый отсек жидкости в виде па­раллелепипеда со сторонами:и 2у. Жидкость движется вдоль оси ОХ (на рисунке 2 слева на право). Грани, через которые жидкость втекает внутрь выделенного отсека и вы­текает из него, имеют площадь . К этим граням приложены силы давления рав­ные:

Гогда выделенный отсек жидкости будет находиться в состоянии равновесия под действием сил давления трения и силы тяжести.

где:     - площадь верхней и нижней граней отсека жидкости.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.