RSS    

   Образ в системе психической регуляции деятельности - (реферат)

p>Объективно воздействующие неинструментальные сигналы гравитационных сил постоянно при помощи вестибулярного анализатора трансформируются в акцелерационные ощущения.

В авиационной психофизиологии были проведены специальные исследования акцелерационных ощущений. В частности, установлены пороги чувствительности человека к угловым ускорениям; при длительности воздействия 0, 5—1 с он равняется 2, 4 гр/с2 при длительности воздействия 1, 1—2 с — 1, 6 гр/с2, а при длительности воздействия 2, 1—3 с — 1, 2 гр/с2. Порог чувствительности человека к перегрузкам при длительности их нарастания 1, 5 с колеблется в пределах 0, 024—0, 03 1/с, а при длительности 4, 5 с — 0, 01—0, 021 1/с. Характерно, что основным фактором, вызывающим акцелерационные ощущения перегрузки, является градиент и длительность действия. При градиенте нарастания 0, 12— 0, 03 1/с величина скрытого периода ощущения равняется 3, 5 с, при 0, 121—0, 15 1/с и 0, 181—0, 21 1/с соответственно 1, 2 и 1, 0 с. В процессе пилотирования было установлено, что летчик реагирует не только на показания приборов, но и на акцелерационные ощущения, которые вдобавок ко всему еще и регулируют быстроту ответной реакции. Количественные выражения этих факторов представлены в табл. 6. 4 и 6. 5.

Как видно из табл. 6. 4, с увеличением углового ускорения среднее время реакции уменьшается и вместе с тем становится более стабильным. И здесь наблюдается та же тенденция.

Как было отмечено в предыдущих главах, летчики независимо от того, какие дискуссии по этому вопросу ведутся в науке, использовали неинструментальную информацию для построения управляющих движений.

Специальные исследования показали также большие возможности человека по использованию неинструментальных сигналов. Приведем некоторые факты. В летных экспериментах [4 Данные Р. А. Вартбаронова и Ф. А. Зубца. ]исследовались характеристики анализаторов при восприятии акцелерационных сигналов. В результате было установлено, что при пилотировании самолета на посадочной прямой величинаNx изменяется в среднем в диапазоне 0, 25—0, 35 м/с2, Ny —0, 2—0, 3 1/с. Эксперименты показали, что около 25% управляющих движений были реакциями на эти, как иногда отмечают, "несущественные" сигналы. В дальнейшем были изучены дифференциальные пороги восприятия величины перегрузки. Оказалось, что они составляют 12% и достигают максимальной величины 25% от уровня действующей перегрузки (приР =0, 95). В летном эксперименте было установлено, что точность считывания по приборам величины крена составляют 2—3 градуса, величины тангажа — 2—3 градуса, величины перегрузки —0, 25 l/c, а оценка этих же параметров по непосредственным ощущениям составляла соответственно: 0, 7—1, 0 градуса, 0, 7—1, 2 градуса, 0, 5—1 l/c. Таблица 6. 4

Зависимость среднего времени скрытого периоде возникновения •кцeлep•циoннoгo ощущения от величины углового ускорения при вводе самолета в крен [77]. Величина углового ускорения гр/с2

    Среднее время реакции, с
    Среднеквадратическое отклонение
    Величина углового ускорения гр/с2
    Среднее время реакции, с
    Среднеквадратическое отклонение
    1–1, 5
    40
    1, 4
    4, 1—7, 0
    1, 55
    0, 84
    1, 5—4. 0
    2, 66
    0, 91
    7, 1—10, 0
    1, 36
    0, 78
    Таблица 6. 5

Зависимость времени реакции от величины углового ускорения и производной вертикальной перегрузки

    Характеристика воздействия
    Латентное время двигательной реакции, с

Угловое ускорение самолета, равное 5—10 гр/с2 величина производной вертикальной перегрузки 0, 25—0, 7 l/c 0, 4

Угловое ускорение самолета, равное 15—20 гр/с2 величина производной вертикальной перегрузки, равная 1. 3—1, 7 l/c 0, 3

Угловое ускорение самолета, равное 25—30 гр/с2, величина производной вертикальной перегрузки, равная 2. 6—3, 3 l/c 0. 2

Примечание. Эффективное время восстановления режима горизонтального полета распределилось следующим образом: при вращении самолета с угловой скоростью 6 гр/с2 эффективное время равняется 3 с, при вращении с угловой скоростью 15 гр/с2 и 30 гр/с2 — соответственно 5 и 7 с. Продолжая наращивать знания по этому вопросу, исследователи получили новые данные, характеризующие влияние опыта летчика на точность создания и соответственно выдерживания заданной величины регулируемого параметра полета по акцелерационным ощущениям. Речь идет о том, что человек на основе акцелерационных ощущений, если они осознаются, может, управляя самолетом, произвольно регулировать (и с большой точностью) величину перегрузки. В качестве иллюстрации приведем данные о точности создания величины перегрузки на основе только ощущений в зависимости от опыта летной работы при условии, что градиент нарастания перегрузки не превышал 1 ед/с. Начинающий летчик способен задать требуемую перегрузку с ошибкой 0, 8±1, 0 ед. , летчик средней квалификации— с ошибкой 0, 5±0, 8 ед. , летчик высокой квалификации — с ошибкой 0, 3±0, 5 ед. , летчик высшей квалификации —с ошибкой ±0, 3 ед. Можно предположить, что преимущественный характер влияния совокупности неинструментальных сигналов на действия зависит от подготовленности летчика, от его умения использовать их для управления или подавлять, когда они мешают ориентировке.

В визуальном полете подавление отрицательного влияния таких воздействий происходит без участия сознания благодаря доминирующей роли устойчивого зрительного перцептивного образа. Эта устойчивость обусловлена тем, что естественные визуальные сигналы, поступающие к летчику, перерабатываются как бы автоматически, они не требуют мысленной переработки: формирование образа происходит на основе сложившейся в процессе летной подготовки концептуальной модели пространства.

В полете по приборам летчик должен ориентироваться не на перцептивный образ, а на образ–представление, который менее устойчив; его формирование и сохранение происходят обязательно при участии сознания, направленного на переработку абстрактных инструментальных сигналов. Именно в полете по приборам инструментальные визуальные и неинструментальные проприоцептивные и кинестетические сигналы оказывают противоречивое воздействие на формирующийся образ пространственного положения, при этом неинструментальные—отрицательное, ведущее к формированию иллюзорных представлений в случае ослабления влияния инструментальных сигналов. Как указывалось, ослабление влияния инструментальной информации вполне вероятно в случае хотя бы кратковременного прекращения произвольного осознанного восприятия и преобразования сигналов в наглядный образ представления. Очень важный для надежности действий компонент образа полета— чувство самолета —в этом случае содержит в себе опасность возникновения иллюзий пространственного положения.

Если в визуальном полете у летчика адекватное содержание образа пространственного положения может формироваться без активного участия сознания, то в полете по приборам необходима непрерывная работа сознания. И чем опытней летчик, тем меньше он позволяет себе отвлекаться от мысли о том, в каком положении относительно земли находится (и будет находиться в ближайшее время) его самолет.

К такой работе сознания побуждает летчика информационная среда полета по приборам, несущая в себе возможность искажения содержания образа в связи с искажением его сенсорно–перцептивных компонентов.

Итак, говоря об информационной среде полета и о ее влиянии на содержание и функционирование образа, следует различать визуальный и приборный полеты. В обоих случаях к летчику поступают визуальные естественные сигналы, которые при неблагоприятных условиях могут помешать формированию адекватного по содержанию образа полета. В визуальном полете перцептивный зрительный образ доминирует и подчиняет себе все другие неинструментальные сигналы, хотя сами зрительные ощущения условий полета необычны в сравнении с земными, благодаря формированию особого функционального органа отражения пространства; образ полета, как отмечалось, является геоцентрическим. В визуальном полете зрительное восприятие подчиняет себе все другие модальности, участвующие в отражении пространства, и корректирует их примерно так же, как при обычном перемещении по земной поверхности.

Чувство самолета в визуальном полете помогает воспринимать перемещение самолета в пространстве. Перцептивный образ полностью соответствует концептуальной модели пространства.

В приборном полете сложность переработки инструментальной информации создает предпосылки для искажения содержания образа в том случае, если произошли перерывы в восприятии и в осмысливании инструментальных визуальных сигналов, а неинструментальные сигналы выдали извращенную информацию. Поскольку уровень сложности переработки инструментальных сигналов зависит от качества индикации пространственного положения, постольку оформление лицевой части индикатора имеет первостепенное значение для повышения надежности ориентировки. Чем проще и быстрее осуществляется преобразование визуальной инструментальной информации в представление, тем больше вероятность преодоления искажений в содержании образа пространства.

Мы считаем, что такое преобразование облегчается, если передаваемая информация соответствует концептуальной модели, сложившейся у летчика, —его представлению о неподвижной земле и перемещающемся относительно земли самолете. До сих пор о содержании образа пространства у летчика мы 'судили в основном по данным их самоотчета. В разделе 6. 2 будут описаны экспериментальные данные, подтверждающие положение о геоцентрическом характере представлений летчика о пространстве.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.