RSS    

   Формирование действия контроля в процессе работы над вычислительными приёмами и навыками у младших школьников - (диплом)

p>Четвертый уровень – актуальный контроль на уровне произвольного внимания. В процессе выполнения действия ученик ориентируется на хорошо осознанную и усвоенную им обобщенную схему действия и успешно соотносит с ней процесс решения задачи. Это приводит к тому, что действия выполняются, как правило, безошибочно. Допущенные ошибки обнаруживаются и исправляются самостоятельно, причем случаи повторения одних и тех же ошибок крайне редки. Может правильно объяснить свои действия. Может безошибочно решать большое число разнообразных задач, построенных на основе одного и того же способа действия, умело соотнося их с усвоенной схемой. Осознанно контролируются действия других учеников при совместном выполнении заданий. Однако, столкнувшись с новой задачей или изменением условий действий, требующих корректив в саму схему действия, ученик оказывается беспомощным и не может отступить от заданной схемы. Другими словами, ученик может успешно контролировать не только итог, но и процесс выполнения действия и по ходу его выполнения сверять совершаемые действия с готовой наличной схемой, однако проконтролировать соответствие самой схемы действий имеющимся новым условием он не может.

    Пятый уровень – потенциальный рефлексивный контроль.

Столкнувшись с новой задачей, внешне похожей на решавшиеся ранее, ученик точно выполняет учебные действия в соответствии с прежней схемой, не замечая того, что эта схема оказывается неадекватной новым условиям. Допущенные ошибки может обнаружить с помощью учителя и, отвечая на его наводящие вопросы, может объяснить их источник–несоответствие примененного действия новым условиям задачи. Обычно после этого ученик пытается исправить свои действия, перестроить применяемый способ, тем не менее это ему удается сделать только с помощью учителя. Под руководством учителя может переходить к выделению принципов построения плана действий соответствующего типа, то есть устанавливать соотнесение между основаниями выбора и построения способов действия и их обобщенных схем в зависимости от изменения условий.

Задания, соответствующие применяемой схеме действий, как знакомые ему, так и незнакомые, выполняет регулярно и безошибочно, контролируя свои действия непосредственно в процессе выполнения. Уверенно отстаивает результат своих действий, обосновывая его анализом примененных способов.

    Шестой уровень – актуальный рефлексивный контроль.

Решая новую задачу, внешне похожую на решаемые ранее, ученик может самостоятельно обнаружить ошибки, возникающие из-за несоответствия применяемого им обобщенного способа действия (или схемы) новым условиям задачи. В связи с этим самостоятельно вносить коррективы в применяемую схему действия за счет поиска и выявления еще более общих оснований действия, т. е. принципов его построения. Другими словами, ученик умеет контролировать не только соответствие выполняемых действий обобщенной их схеме, но и соответствие самой этой обобщенной схемы изменившимся условиям задачи. В ряде случаев ученик может приступать к такой коррекции действий еще до начала их фактического выполнения в соответствии с усвоенной схемой, определив её неадекватность новым условиям заранее, как бы“прокрутив их в уме”. Помощь учителя может при этом встречать отрицательно, пытаясь сначала выработать новый способ самостоятельно.

На основе вышеизложенного материала, нами была создана нормативная модель действия контроля в учебной деятельности младших школьников: потребность в контроле;

    осознание назначения контроля;

умение обнаруживать ошибку (свою, своих товарищей, учителя; самостоятельно, в хорошо знакомых действиях, в новых условиях);

    умение объяснить ошибку;

умение критически относиться к контролю со стороны других детей, учителя; умение исправлять ошибку на основе соотнесения хода и результата действия с заданной схемой действия;

умение осуществлять содержательный контроль, обнаружить ошибки по причине несоответствия способа действия и условий задачи;

умение осуществлять межличностный рефлексивный контроль (реконструировать способ действий товарища);

    умение осуществлять проверку;
    умение составлять план проверки.
    1. 3. Выводы по главе.

Сущность действия контроля заключена в обязательном сопоставлении действий с “образцом”, с эталоном действия. Формирование действия контроля у младших школьников проходит путь от контроля со стороны взрослых (от внешней формы) к собственно самоконтролю (к внутренней форме). В начале обучения в школе овладение действием контроля выступает как самостоятельная форма деятельности, внешняя по отношению к основной задаче. Постепенно, в процессе обучения действие контроля превращается в необходимый элемент учебной деятельности, включенный в процесс ее выполнения. Выполнение действия контроля способствует тому, что учащиеся обращают внимание на содержание собственных действий с точки зрения их соответствия решаемой задаче. Такое отношение школьников к собственным действиям служит существенным условием правильности их построения и изменения.

На начальном этапе обучения действие контроля реализуется по конкретному образцу, затем по представлению о нем и на завершающем этапе– на основании обобщенного представления образцов.

2. Возможности формирования действия контроля в процессе работы над вычислительными приёмами и навыками

2. 1. Общая характеристика формирования вычислительных приёмов и навыков у младших школьников

Деятельность по овладению вычислительных приёмов можно рассматривать как учебную деятельность, важнейшим компонентом является действие контроля. Под контролем при правильности вычислительных приёмов следует понимать как проверку всей деятельности, направленной на выполнение вычислительных приёмов, так и проверку конечного результата.

В век компьютерной грамотности значимость навыков письменных вычислений, несомненно, уменьшилась. Вместе с тем, научиться быстро и правильно выполнять письменные вычисления важно для младших школьников как в плане продолжающейся работы с числами, так и в плане практической значимости этих навыков для дальнейшего обучения в школе.

Особенность изучения письменных вычислений обусловлена тем, что у детей быстро развивается усталость при работе с числами. Это объясняется большим количеством операций как письменного сложения и вычитания, так и письменного умножения и деления. Избежать быстрой утомляемости и снижения внимания при изучении письменных вычислений поможет чередование различных видов деятельности, отказ от однообразных тренировочных упражнений, обучение приёмам действия контроля. Действие контроля должно присутствовать на каждом этапе выполнения вычислительного приёма. Только в этом случае возможно постоянное прослеживание хода выполнения учебных действий, своевременное обнаружение различных больших и малых погрешностей в их выполнении, а также внесение необходимых корректив в них. Обнаруженная ошибка в процессе вычислений позволит сохранить ребёнку внутренние силы, предотвратить преждевременную усталость. Для контроля в выполнении письменных вычислений целесообразно показать ученикам, как использовать опорные сигнал, например точки, напоминающие о том, что следует учесть перенесённую через разряд единицу. В связи с этим необходимо больше внимания уделять формированию действия контроля в процессе работы над вычислительными приёмами и навыками, так как организационное на уроке математики действие контроля, приводит к концентрации внимания всех учащихся, формирует в практической деятельности каждого ученика умение рассуждать, исключает ошибки в тетрадях, что позволяет совершенствовать умения осознанно выполнять вычислительные приёмы.

Формирование у младших школьников вычислительных навыков остаётся одной из главных задач начального обучения математике, поскольку вычислительные навыки необходимы при изучении арифметических действий.

В ряде исследований [2], [8] раскрываются основные положения системы формирования вычислительного навыка. Особое внимание было уделено работе М. А. Бантовой, посвящённой изучению данной темы.

Раскроем суть вычислительного приёма. Пусть надо сложить числа 8 и 6. Приём вычисления для этого случая будет состоять из ряда операций: замена числа 6 суммой удобных слагаемых 2 и 4;

    прибавление к числу 8 слагаемого 2;

прибавление к полученному результату, к числу 10, слагаемого 4. Здесь выбор операций и порядок их выполнения определяется соответствующей теоретической основой приёма–применением свойства прибавления к числу суммы (сочетательное свойство): замена числа 6 суммой удобных слагаемых, затем прибавление к числу 8 последовательно каждого слагаемого. Кроме того, здесь используются и другие знания, например, при выполнении первой операции используется знание состава чисел первого десятка: 10=8+2 и 6=2+4.

Таким образом, можно сказать, что приём вычисления над данными числами складывается из ряда последовательных операций, выполнение которых приводит к нахождению результата требуемого арифметического действия над этими числами; причём выбор операций в каждом приёме определяется теми теоретическими положениями, которые используются в качестве теоретической основы. Вычислительный навык – это высокая степень овладения вычислительными приёмами. В большинстве случаев уже в начальных классах школы для нахождения результата арифметического действия можно использовать в качестве теоретической основы различные теоретические положения, что приводит к разным приёмам вычислений. Например:

    15Ч6=15+15+15+15+15+15=90;
    15Ч6=(10+5)Ч6=10Ч6+5Ч6=90;
    15Ч6=15Ч(2Ч3)=(15Ч2)Ч3=90.

Теоретической основой для выбора операций, составляющих первый из приведённых приёмов, является конкретный смысл действия умножения; теоретической основой второго приёма– свойство умножения суммы на число, а третьего приёма –свойство умножения числа на произведение. Операции, составляющие приём вычисления, имеют разный характер. Многие из них сами являются арифметическими действиями. Эти операции играю особую роль в процессе овладения вычислительными приёмами: выполнение приёма в свёрнутом плане сводится к выделению и выполнению именно операций, являющихся арифметическими действиями. Поэтому операции, являющиеся арифметическими действиями, можно назвать основными. Например, для случая 16Ч4 основными будут операции: 10Ч4=40, 6Ч4=24, 40+24=64. Все другие операции – вспомогательные. Число операций составляющих прием, определяется прежде всего выбором теоретической основы вычислительного приема. Например, при сложении чисел 57 и 25 в качестве теоретической основы может выступать свойство прибавления суммы к числу, тогда прием будет включать три операции: замена числа 25 суммой разрядных слагаемых 20 и 5, прибавление к числу 57 слагаемого 20 и прибавление к результату, к 77, слагаемого 5; если же теоретической основой является свойство прибавления суммы к сумме, то прием для того же случая будет включать пять операций: замена числа 75 суммой разрядных слагаемых 50 и 7, замена числа 25 суммой разрядных слагаемых 20 и 5, сложение чисел 7 и 5, сложение полученных результатов 70 и 12. Число операций зависит также от чисел, над которыми выполняются арифметические действия.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.