Реферат: Структура и адгезионные свойства отверждённых эпоксидных смол
Косвенным подтверждением такого предположения служат результаты изучения адгезии тех же олигомеров к чистой огнеполированной поверхности непосредственно вытянутых из печи стеклянных волокон и к волокнам бора: в этом случае величина t0 существенно меняется.
Известно, что для увеличения прочности углепластика при межслоевом сдвиге часто используют различные способы окислительной обработки наполнителя: окисление горячим воздухом, обработка озоном, электрохимическая активация методом анодного окисления. Кроме того, поверхность углеродных волокон обрабатывают специальными аппретами[7].
Рассмотрим влияние обработки поверхности углеродных волокон на межфазное взаимодействие для волокон на основе полиакрилонитрила. Адгезионная прочность при взаимодействии связующих с этими волокнами, если их поверхность не подвергнута химической обработке, невысока:
nt | ns | t0 МПа | |
Эпоксидиановое ЭДТ-10 | 32 | 54 | 44,3 |
Эпоксиноволачная | 31 | 44 | 39,0 |
Хлорсодержащее Эпоксидное |
59 | 35 | 27,5 |
Адгезионная прочность в этом случае существенно ниже, чем при взаимодействии со стеклянными волокнами. Например, для связующего ЭДТ-10 значение tо при взаимодействии со стеклянными волокнами (при одной и той же геометрии соединения) равно 55 МПа.
Активирование поверхности волокон окислительной электрохимической обработкой приводит к существенному повышению прочности на границе раздела. Это, прежде всего, проявляется в том, что при сохранении геометрии соединения резко возрастает число образцов, разрушающихся по волокну. Поэтому требуется значительно уменьшить среднюю площадь; успешно определить значение tо удается лишь при Scp=(1,5-2)×10-3 мм2. Влияние обработки поверхности на адгезионную прочность (S = 2×10-3 мм2) иллюстрируют следующие данные:
Прочность волокон, Мпа | t0 МПа | |
Исходное волокно | 3000 | 71/52 |
Озонирование | 2780 | -/78 |
Электрохимическая обработка | 2800 | 91/- |
В числителе—для эпоксидианового связующего, в знаменателе—для эпоксиноволачного.
Окислительное модифицирование поверхности волокон приводит к существенному росту адгезионной прочности. Так, для связующего ЭДТ-10 значения tо возрастают на 28 %. Увеличение адгезии как с изменением структуры поверхности волокон, так и с ее химической модификацией. Окисление ведёт к росту шероховатости поверхности, возникновению дополнительных пор и пустот, а следовательно, — к росту удельной поверхности волокон. В то же время при окислении на поверхности могут возникать полярные кислородсодержащие группы (карбонильные и карбоксильные), значительно повышающие активность этой поверхности[7].
Окислительная обработка приводит к некоторому увеличению удельной поверхности, однако она продолжает оставаться невысокой, что свидетельствует о малой пористости и дефектности поверхности данных углеродных волокон. Это подтверждает и тот факт, что прочность элементарных волокон после обработки меняется незначительно.
При высокотемпературной обработке волокон с модифицированной поверхностью выделяется в два раза больше газов (СО+С02), чем при той же обработке исходных волокон, т. е. химическая активность поверхности после окислительной обработки растет. С увеличением активности связан рост адгезионной прочности в системах углеродное волокно — связующее. Обработка поверхности углеродных волокон в газоразрядной плазме к увеличению прочности сцепления с эпоксидными матрицами не приводит.
Адгезия полимерных матриц к высокопрочным органическим волокнам
Пластики на основе полимерных волокон (лавсан, капрон, нитрон, фенилон, аримид и др.) находят широкое применение в самых различных областях народного хозяйства. Однако большинство из этих волокон не обладает высокой прочностью и не используется для получения высокопрочных композитов конструкционного назначения.
Для получения органоволокнитов с высокими механическими показателями в последнее время используют жесткоцепные полиамидные волокна типа ВНИИВЛОН. Адгезию к этим волокнам будет рассмотрена в этом разделе. Средний диаметр используемых волокон 13—13,5 мкм, сечение круглое, поверхность достаточно гладкая, отношение измеренной удельной поверхности к геометрической близко к 1: Sэксп/Sрассчит=1,33. Связующими служили эпоксидные полимеры.
При изготовлении соединений термореактивного полимерного связующего с полимерными органическими волокнами, как и при получении органоволокнитов, возможно проникновение полимера в субстрат. Для оценки такого проникновения часто определяют набухание волокон в связующем. Измерения показали, что в исследуемых нами случаях набухание волокон невелико. Так, равновесное набухание волокон в компонентах связующего ЭДТ-10, оцененное по изменению линейных размеров и массы волокон, при 90 и 120 °С не превышает 0,2—0,4 %.
Для систем, в которых возможна диффузия адгезива в волокно, следует особенно тщательно контролировать характер разрушения. В данном случае контроль осуществляется с помощью электронного микроскопа (X2000). В большинстве случаев при адгезионном разрушении соединений с органическими волокнами, как и в случае стеклянных волокон, в слое смолы под микроскопом видно ровное круглое отверстие. Однако в то время как конец стеклянного волокна, выдернутый из адгезионно - разрушившегося соединения, чистый и гладкий (без следов смолы), конец органического волокна в большинстве случаев представляет собой «метелку», состоящую из отдельных тонких фибрилл (рис. 21). Следует отметить также, что при разрушении соединений с органическими волокнами, кроме образцов с чисто адгезионным характером разрушения, встречаются образцы, в которых после выдергивания волокна у нижнего края отверстия видны торчащие тонкие «усы» — вероятнее всего фибриллы расщепившегося волокна. Такой тип разрушения условно может быть отнесен к адгезионному, хотя не исключено, что тут имеет место смешанный механизм. Когезионно разрушившимися считались образцы, в которых разрыв произошел по волокну или по смоле. Результаты измерения адгезионной прочности приведены в табл. 4. Там же для сравнения приведены значения tо для соединений некоторых из исследованных полимеров со стеклянным волокном того же диаметра. Оказалось, что для всех исследованных связующих адгезия к полиамидным волокнам не ниже, чем к стеклянным, а для таких связующих, как ЭДТ-10 и 5-211, достигает (при S=6×10-3 мм2) 57,0 МПа. Это самые высокие значения, полученные для соединений подобной геометрии[7].
Изменение прочности исследуемых волокон мало сказывается на прочности их сцепления с эпоксидными матрицами. Так, для волокон с прочностью 3600 и 3000 МПа значения tо в случае связующего ЭДТ-10 (при S=4,5×10-3 мм2) равны соответственно 67 и 69 МПа.
Таблица 4
Адгезионная прочность при взаимодействии термореактивных связующих с органическими волокнами
и стеклянными диаметром 13—13,5 мкм (S=6×10-3 мм2)
Адгезия полимерных матриц к борным волокнам
Пластики, армированные борными волокнами, характеризуются весьма высокой жесткостью и самой высокой по сравнению со всеми существующими композиционными материалами прочностью при сжатии. Это обусловлено большим диаметром и высоким модулем упругости волокон бора.
На рис. 18 представлены значения адгезионной прочности при взаимодействии эпоксидианового олигомера ЭД-20, отвержденного различными аминными отвердителями при комнатной и повышенных температурах, с борными и стальными волокнами. Видно, что прочность сцепления эпоксидиановых связующих горячего и холодного отверждения с волокнами бора (d = 100—200 мкм) несколько выше, чем со стальными. Высокие значения адгезионной прочности связаны с топографией поверхности волокон бора. Эти волокна имеют плотную, сравнительно гладкую поверхность, имеющую форму кукурузного початка. Поэтому прочность сцепления с ними может определяться не только специфической, но и механической адгезией, и кроме того, истинная площадь контакта связующего с волокном может оказаться несколько больше видимой. Оба фактора могут приводить к увеличению измеряемого значения t0.
РИС.18. Зависимость адгезионной прочности в соединениях с эпоксидными связующими на основе олигомера ЭД-20 с борным и стальным волокнами при различного диаметра и отвердителях:
РИС. 19. Зависимость адгезионной прочности системы борные волокна диаметром 100 мкм—эпоксидное связующее (1—ЭДТ-10, 2—УП-2130, 3— ДГЭР) от площади соединения
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12