RSS    

   Реферат: Автоматизированный электропривод механизма перемещения стола продольно-строгального станка

СПР имеют следующие достоинства:

1.   Простота расчета регуляторов каждого контура при настройке по тому или иному оптимуму.

2.   Высокие статические и динамические показатели, обеспечиваемые настройкой контуров регулирования по модульному или симметричному оптимумам.

3.   Простота ограничения регулируемых координат.

4.   Унификация оборудования, обусловленная особенностями регуляторов СПР и наличием унифицированных блочных систем регулирования, специально выпускаемых для СПР.

5.   Простота настройки.

Основной недостаток - некоторый проигрыш по быстродействию.


На рис. 10 представлена структурная схема двухконтурной системы подчиненного регулирования электропривода постоянного тока.

Подпись: Рисунок 11
Функциональная схема САР скорости


В соответствие с требованиями к электроприводу принимаем двухконтурную САР скорости с внутренним контуром регулирования тока якоря. Выбираем однократно интегрирующую САР скорости, поскольку астатизм системы по моменту сопротивления не требуется и однократно интегрирующая САР обладает динамическими свойствами по сравнению с двукратно интегрирующей. Контуры тока якоря и скорости настроены на модульный оптимум. Поэтому в системе применяется ПИ-регулятор тока и П-регулятор скорости. Ускорение и замедление привода обеспечивается путем формирования линейно изменяющегося сигнала задания на скорость задатчиком интенсивности. Функциональная схема САР скорости представлена на рис. 11.


7 РАСЧЕТ КОНТУРА РЕГУЛИРОВАНИЯ ТОКА ЯКОРЯ И ЦЕПИ КОМПЕНСАЦИИ ЭДС ЯКОРЯ

7.1 ВЫБОР КОМПЕНСИРУЕМОЙ ПОСТОЯННОЙ

Величина Тμ является "базовой" при расчете СПР, для которых характерно, что динамические свойства системы не зависит от параметров объекта регулирования и определяется только величиной постоянной времени Тμ фильтра, установленного на выходе регулирующей части системы управления. Таким образом , в стандартных системах регулирования величина Тμ является единственным средством воздействия на систему управления.

С одной стороны уменьшение Тμ приводит к увеличению быстродействия и снижению статической и динамической ошибок по скорости при приложении внешних возмущающих воздействий, с другой стороны величина этой постоянной времени должна быть достаточно большой, чтобы обеспечить высокую помехозащищенность системы, ограничение тока якоря на допустимом уровне и устойчивость работы САУ с учетом дискретность тиристорного преобразователя.

Следовательно фильтр с постоянной времени Тμ должен реально присутствовать в САУ электроприводом.

В реальных САУ с подчиненным регулированием параметров величина Тμ лежит в пределах 0,004-0,01 с.

Для нашей системы выберем Тμ = 0,007 с.

7.2 расчет контура регулирования тока якоря

7.2.1 Расчетная структурная схема контура тока


Контур регулирования тока якоря является внутренним контуром САУ электроприводом. Он образуется регулятором тока, фильтром с постоянной времени Тμ, тиристорным преобразователем, якорной цепью и обратной связью по току через датчик тока (kдт = 1). В объекте управления имеет место внутренняя обратная связь по ЭДС якоря двигателя. Структурная схема контура тока представлена на рис. 12.


7.2.2 Передаточная функция регулятора тока

При синтезе регулятора внутренняя обратная связь оп ЭДС не учитывается.

Передаточная функция регулятора тока, найденная по условию настройки на модульный оптимум:

, где

Тi1 = = 0,07с;

При выборе данной передаточной функции регулятора тока замкнутый контур тока будет описываться передаточной функцией фильтра Баттерворта II порядка:

 
При условии неподвижного якоря двигателя (когда ω = 0, ея = 0). В этом случае реакция контура на единичное ступенчатое задание тока представлена кривой 1 на
рис. 13.


7.2.3 Компенсация влияния ЭДС якоря двигателя

Действие ЭДС якоря приводит к погрешности регулирования тока. Появляется астатизм контура по задающему воздействию. При единичном задании на ток статическая ошибка составит:

, где


Статическая ошибка по току оказывается существенной, поэтому пренебречь влиянием обратной связи по ЭДС нельзя. Для компенсации влияния ЭДС якоря используют принцип комбинированного управления. В систему управления вводится положительная обратная связь по ЭДС. Для удобства технической реализации эта обратная связь подается на вход регулятора тока, а фильтр выносится из контура в цепь задания и обратной связи по току. Структурная схема контура тока с компенсирующей связью по ЭДС представлена на рис. 14.

Подпись: Рисунок 14
Структурная схема контура регулирования тока якоря с компенсирующей связью по ЭДС

Передаточная функция звена компенсации ЭДС будет иметь вид:

, где


7.2.4 Реализация датчика ЭДС

ЭДС якоря двигателя, в отличие от тока якоря и скорости, недоступна для прямого измерения. Датчик косвенного измерения ЭДС якоря использует сигналы датчика тока якоря и датчика напряжения на якоре двигателя. Связь между током якоря, напряжением якоря и ЭДС якоря устанавливает уравнение электрического состояния равновесия в якорной цепи. В операторном виде оно имеет вид:

, где


Выразив ЭДС, получим уравнение датчика. Структурная схема датчика тока приведена ниже. Для возможности практической реализации форсирующего звена и защиты системы от помех в сигналах датчиков в канале тока и напряжения датчика ЭДС добавлено инерционное звено с постоянной времени Тμ. Таким образом реальный датчик ЭДС будет инерционным.

7.3 Конструктивный РАСЧЕТ

Рассмотрим реализацию управляющей части контура тока якоря в аналоговой системе автоматического управления электроприводом на базе операционных усилителей.

Принципиальная схема регулятора тока и цепи компенсации ЭДС представлена на рис. 16.

Регулятор реализован на усилителе DA1, звено компенсации ЭДС - на усилителе DA2. Усилитель DA3 предназначен для суммирования сигналов в датчике ЭДС.

Для расчета элементов схемы по известным значениям параметров в относительных единицах используем базисные величины:

Iбр = 0,5 мА - базисный ток регулирования принимаем, как рекомендуется в [5].

Uбр = 10 В - базисное напряжение регулирования.


Подпись: Рисунок 16
Принципиальная схема управляющей части контура тока


Базисное сопротивление системы регулирования:


Страницы: 1, 2, 3, 4, 5, 6, 7


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.