RSS    

   Реферат: Лекции - Патофизиология (патофизиология печени)

В области внутриклеточной плазматической мембраны соседние гепатоциты соединены между собой при помощи соединительных комп­лексов."Тесные соединения", которые также называют как Zona occ­ludens, отделяют просвет желчных канальцев от интерцеллюлярного пространства или пространства Дисса, но осуществляют парацеллю­лярный поток воды и катионов (напр., ионов натрия) из интерцеллю­лярного пространства и пространства Дисса в просвет желчного ка­нальца (рис.34.2).Параллельно с "тесными соединениями" вдоль желчного канальца находятся "промежуточные соединения", которые содержат конрактильные микрофиламенты.Посредством похожих на пе­ристальтику сокращений периканаликулярно расположенных узлов из микрофиламентов в "промежуточных соединениях" выполняются не только проталкивающие эффекты в канальцах, а также механическая сила воздействует на интерцеллюлярную мембрану для клеточных по­токов воды и ионов. "Соединения промежутков" представляют собой агрегаты интрамембранных частиц в области интерцеллюлярной плаз­матической мембраны, которые формируют через интерцеллюлярные промежутки от гепатоцита к гепатоциту небольшие каналы.Эти каналы проходимы для ионов и небольших молекул, и таким образом осущест­вляют межклеточные коммуникации, что имеет большое значение для координации секреции желчи в гепатоцитах (21).При холестазе, ко­торый представляет собой нарушение секреции желчи, повышается проницаемость "тесных соединений", барьерная функция "тесных сое­динений", которые разъединяют в норме желчь от интерцеллюлярного пространства, в просвете канальца, нарушена.Это выражается в хо­лестазе в обратном токе желчи в пространство Дисса, что клиничес­ки проявляется в форме желтухи и выражается, например, в повыше-

- 6 -

нии концентрации желчных кислот в сыворотке.Плазматическая мемб­рана со структурно и функционально различными доменами окружает цитоплазму гепатоцитов, в которых содержатся многочисленные кле­точные органеллы, как митохондрии, эндоплазматический ретикулум, лизосомы, аппарат Гольджи или цитоскелет.

Эндоплазматический ретикулум гепатоцитов, который у взрослых людей на 40% состоит из шероховатого (содержащего рибосомы) и на 60% из гладкого эндоплазматического ретикулума, может быть при болезнях печени поврежден как в структурном, так и в функциональ­ном отношениях.Синтез белков происходит, главным образом, в шеро­ховатом эндоплазматическом ретикулуме перипортальных гепатоцитов зоны 1 легочного ацинуса.Глазкий эндоплазматический ретикулум от­ветственен за синтез липидов, накопление гликогена, биотрансфор­мацию стероидов, медикаментов и карциногенов, он содержит фермен­ты биосинтеза холестерина, желчных кислот, а также уридиндифос­фат-(УДФ)-глюкуронилтрансферазы, которые, помимо всего прочего, ответственны за конъюгацию медикаментов, билирубина и желчных кислот с глюкуроновой кислотой (57,67).Следовательно, гладкий эн­доплазматический ретикулум имеет функцию обезвреживания ядов.При холестазе, несмотря на гипертрофию, возникает гипоактивность гладкого эндоплазматического ретикулума (68).

Лизосомы богаты гидролитическими ферментами.При холестазе наблюдается повышение числа гепатоцитных лизосом, которые могут содержать билирубин, поврежденные цитоплазматические компоненты и другие составные части мембран (21).В случае болезни Вильсона наблюдается накопление меди и при гемохроматозе-железа, в лизосо­мах.

Аппарат Гольджи находится в многообразных взаимоотношениях с эндоплазматическим ретикулумом и лизосомами, что выражается в концепции GERL-комплекса (Goldi, endoplasmatische Reticulum, Li­sosomen)(62).Аппарат Гольджи имеет функцию "переносчика", напри­мер, в секреции альбумина, фибриногена и ЛПОНП, через синусои­дальную плазматическую мембрану в кровь, а также в направлении желчного канальца, например, при переносе конъюгатов глютатиона в желчь.Таким образом, аппарат Гольджи участвует в секреции желчи и обнаруживает изменения как при холестазе, так и при холорезе (21).

Цитоскелет гепатоцитов состоит из микротрубочек и микрофила­ментов.Среди микрофиламентов различают актинмикрофиламенты, мио­зиновые микрофиламенты и интермедиарные микрофиламенты.Актиномик­рофиламенты особенно расположены вокруг желчного канальца, но

- 7 -

связаны с "тесными соединениями". Посредством похожих на перис­тальтику сокращений вокруг желчного канльца и посредством измене­ний плотности "тесных соединений". Микротрубочки с их полыми структурами являются важной составной чатью структуры гепатоцита и играют важную роль во внутриклеточном транспорте метаболитов и новосинтезированного белка (21).

Хотя все гепатоциты обладают такими структурами и метаболи­ческими способностями, из структурной концепции печеночного аци­нуса вытекает модель метаболического зонирования печеночной па­ренхимы с уменьшением оксигенации, а также концентрации субстрата и гормонов в крови от зоны 1 к зоне 3.

Метаболическое зонирование печеночной паренхимы. Функциональная микроструктура печени в форме печеночного аци-

нуса находит свое отражение в модели "метаболического зонирования

печеночной паренхимы" (44). Гепатоцит в перипортальной и периве­нозной зоны паренхимы печени в ацинусе различаются по своему снабжению ферментами и субклеточными структурами. Если принять, что активность ключевых ферментов определяют величину способности метаболизма, то можно представить различные функции для перипор­тальной и перивенозной зон (43) (Таб.34.1). Такие при равном ге­патоцеллюлярном содержании ферментов во всех клетках паренхимы печеночного ацинуса возможны различные метаболические функции в различных зонах ацинуса, поскольку зоны подвергаются различному управлению посредством различий в концентрации притекающих субс­тратов.

Таким образом, концентрация кислорода в перипортальной крови увеличивается и становится такой же, как и в перивенозной крови, также и взаимоотношения отдельных грмонов, как инсулин, глюкагон, катехоламины изменяются во время пассажа по печени, поскольку скорость расхода отдельных гормонов может быть различной. Это оз­начает, что перипортальная зона характеризуется гормональными приказами, по сравнению с перивенозной зоной, возникает зональная гетеррогенность сигнала (42, 43).

Таблица 34.1. Модель метаболического зонирования печеночной паренхимы (по Fungermann)

-----------------------------------------------------------------

Перипортальная зона                                                            Перивенозная зона

- 8 -

Окислительный энергетический метаболизм

Окисление жирных кислот

Цитратный цикл

Дыхательная цепь

Выделение глюкозы

Глюконеогенез

Синтез гликогена из лактата

Распад гликогена до глюкозы

Превращение аминокислот

Переход аминокислот до глю­козы

Распад аминокислот

Синтез мочевины из азота аминокислот

Поглощение глюкозы

Гликолиз

Синтез гликогена из глюкозы

Распад гликогена до лактата

Липонеогенез

Обезвреживание Синтез мочевины Оксидативная защита Выделение желчных кислот Выделение билирубина

NН 43

Образование глутамина

Биотрансформация

Общая и специальная патофизиология.

Обмен и печень.

Печень в качестве центрального метаболического органа выпол­няет важную роль в обмене углеводов, жиров и протеинов.

Обмен углеводов и печень.

Ключевую роль выполняет печень при поддержании гемостаза глю­козы.

В пострезорбтивной фазе, примерно черер 4 часа после приема пищи, потребность организма в глюкозе составляет примерно 7,5 г в час, причем мозг потребляет 6 г в час и эритроциты 1,5 г в час.Эта потребность в глюкозе покрывается печенью, где 4,5 г в час поставляется за счет распада гликогена и 3 г в час - глюконе­огенезом из лактата, аминокислот и глицерина (43).

При обычном питании с потреблением углеводов, равном примерно

- 9 -

100 г эквивалента глюкозы во время еды в ходе фазы резорбции только в первые оба часа после приема пищи всасывается примерно 40-60 г глюкозы в час.Мозг и эритроциты потребляют только пример­но 7,5 г в час.Избыточная глюкоза прежде всего воспринимается пе­ченью, превращается в гликоген, жир или в СО2.Инсулин, который при всасывании глюкозы одновременно выделяется в кровь воротной вены, стимулирует это поглощение глюкозы и превращение.

Фруктоза превращается в печени при помощи фермента фруктоки­назы во фруктозо-1-фосфат и, наконец,альдолазой печени переводит­ся в триозы глицеринальдегид и дигидроксиацетон-фосфат, которые могут метаболизироваться в лактат.Таким способом в нормальной пе­чени в лактат превращается около 70% поглощенной фруктозы.При ин­фузии фруктозы происходит повышение уровня лактата в сыворотке в 2-5 раз с развитием лактатацидоза, в то время как при инфузии глюкозы в крови наблюдается лишь двукратный подъем концентрации лактата.Причиной развития лактатацидоза при инфузии фруктозы, в отличие от инфузии глюкозы можно усматривать в том, что вследс­твие очень высокой активности фруктокиназы в печени, с полувреме­нем, равным 18 минутам, фруктоза очень быстро переводится в пече­ни в лактат.

Галактоза в тонком кишечнике освобождается из лактозы, при пассаже крови воротной вены через печень почти полностью удаляет­ся посредством фосфорелирования специфической галактокиназой из крови.Элиминация галактозы через рот или после внутривенной инъ­екции галактозы применяется для характеризации функции печени (86).

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.