Реферат: VB, MS Access, VC++, Delphi, Builder C++ принципы(технология), алгоритмы программирования
Next i
Loop While bad_trials < max_bad_trials
End Sub
Локальные оптимумы
Если программа заменяет случайно выбранную позицию в пробном решении, то может встретиться решение, которое она не может улучшить, но которое при этом не будет наилучшим из возможных решений. Например, рассмотрим список инвестиций, приведенный в табл. 8.5.
Предположим, что алгоритм случайно выбрал позиции A и B в качестве начального решения. Его стоимость будет равно 90 миллионам долларов, и оно принесет 17 миллионов прибыли.
Если программа удалит позиции A и B, то стоимость решения будет все еще настолько велика, что программа сможет добавить всего лишь одну позицию к решению. Так как наибольшую прибыль приносят позиции A и B, то замена их другими позициями уменьшит суммарную прибыль. Случайное удаление одной позиции из этого решения никогда не приведет к улучшению решения.
Наилучшее решение содержит позиции C, D и E. Его полная стоимость равно 98 миллионам долларов и суммарная прибыль составляет 18 миллионов долларов. Чтобы найти это решение, алгоритму бы понадобилось удалить из решения сразу обе позиции A и B и затем добавить на их место новые позиции.
Решения такого типа, для которых небольшие изменения решения не могут улучшить его, называются локальным оптимумом (local optimum). Можно использовать два способа для того, чтобы программа не застревала в локальном оптимуме, и могла найти глобальный оптимум (global optimum).
@Таблица 8.5. Возможные инвестиции
=============213
Во‑первых, можно изменить программу так, чтобы она удаляла более одной позиции во время случайных изменений. В этом примере, программа могла бы найти правильное решение, если бы она одновременно удаляла бы по две случайно выбранных позиции. Тем не менее, для задач большего размера, удаления двух позиций может быть недостаточно. Программе может понадобиться удалять три, четыре, или больше позиций.
Второй, более простой способ заключается в том, чтобы делать больше попыток, начиная с разных начальных решений. Некоторые из начальных решений будут приводить к локальным оптимумам, но одно из них позволит достичь глобального оптимума.
Программа Heur демонстрирует три стратегии последовательных приближений. При выборе метода Fixed 1 (Фиксированный 1) делается N попыток. Во время каждой попытки выбирается случайно решение, которое программа затем пытается улучшить за 2 * N попыток, случайно удаляя по одной позиции.
При выборе эвристики Fixed 2 (Фиксированный 2)делается всего одна попытка. При этом программа выбирает случайное решение и пытается улучшить его, случайным образом удаляя по одной позиции до тех пор, пока в течение N последовательных изменений не будет никаких улучшений.
При выборе эвристики No Changes 1 (Без изменений 1) программа выполняет попытки до тех пор, пока после N последовательных попыток не будет никаких улучшений. Во время каждой попытки программа выбирает случайное решение и затем пытается улучшить его, случайным образом удаляя по одной позиции до тех пор, пока в течение N последовательных изменений не будет никаких улучшений.
При выборе эвристики No Changes 2 (Без изменений 2)делается одна попытка. При этом программа выбирает случайное решение и пытается улучшить его, случайным образом удаляя по две позиции до тех пор, пока в течение N последовательных изменений не будет никаких улучшений.
Названия эвристик и их описания приведены в табл. 8.6.
Алгоритм «отжига»
Метод отжига (simulated annealing) ведет свое начало из термодинамики. При отжиге металла он нагревается до высокой температуры. Молекулы в нагретом металле совершают быстрые колебания, а при медленном остывании они начинают располагаться упорядоченно, образуя кристаллы. При этом молекулы постепенно переходят в состояние с минимальной энергией.
@Таблица 8.6. Стратегии последовательных приближений
===========214
При медленном остывании металла, соседние кристаллы сливаются друг с другом. Молекулы в одном из кристаллов покидают состояние с минимальной энергией и принимают порядок молекул в другом кристалле. Энергия получившегося кристалла большего размера будет меньше, чем сумма энергий двух исходных кристаллов. Если охлаждение происходит достаточно медленно, то кристаллы становятся очень большими. Окончательное распределение молекул представляет состояние с очень низкой энергией, и металл при этом будет очень твердым.
Начиная с состояния с высокой энергией, молекулы в конце концов достигают состояния с очень низкой энергией. На пути к конечному положению, они проходят множество локальных минимумов энергии. Каждое сочетание кристаллов образует локальный минимум. Кристаллы могут объединяться друг с другом только за счет временного повышения энергии системы, чтобы затем перейти к состоянию с меньшей энергией.
Метод отжига использует аналогичный подход для поиска наилучшего решения задачи. Во время поиска решения программой, она может застрять в локальном оптимуме. Чтобы избежать этого, программа время от времени вносит в решение случайные изменения, даже если очередное изменение и не приводит к мгновенному улучшению результата. Это может помочь программе выйти из локального оптимума и отыскать лучшее решение. Если это изменение не ведет к лучшему решению, то вероятно, через некоторое время программа его отбросит.
Чтобы эти изменения не возникали постоянно, алгоритм изменяет вероятность возникновения случайных изменений со временем. Вероятность P возникновения одного из подобных изменений определяется формулой P = 1 / Exp(E / (k * T)), где E — увеличение «энергии» системы, k — некоторая постоянная, и T — переменная, соответствующая «температуре».
Вначале температура должна быть высокой, поэтому и вероятность изменений P = 1 / Exp(E / (k * T)) также достаточно велика. Иначе случайные изменения могли бы никогда не возникнуть. С течением времени значение переменной T постепенно снижается, и вероятность случайных изменений также уменьшается. После того, как модель дойдет до точки, в которой она никакие изменения не смогут улучшить решение, и температура T станет достаточно низкой, чтобы вероятность случайных изменений была мала, алгоритм заканчивает работу.
Для задачи о формирования портфеля, в качестве прибавки «энергии» E выступает уменьшение прибыли решения. Например, при удалении позиции, которая дает прибыль 10 миллионов, и замене ее на позицию, которая приносит 7 миллионов прибыли, энергия, добавленная к системе, будет равна 3.
Заметьте, что если энергия велика, то вероятность изменений P = 1 / Exp(E / (k * T)) мала, поэтому вероятность больших изменений ниже.
Алгоритм отжига в программе Heur устанавливает значение постоянной k равным разнице между наибольшей и наименьшей прибылью возможных инвестиций. Начальная температура T задается равной 0,75. После выполнения определенного числа случайных изменений, температура T уменьшается умножением на постоянную 0,95.
=========215
Public Sub AnnealTrial(K As Integer, max_non_changes As Integer, _
max_back_slips As Integer)
Const TFACTOR = 0.95
Dim i As Integer
Dim non_changes As Integer
Dim t As Double
Dim max_profit As Integer
Dim min_profit As Integer
Dim doit As Boolean
Dim back_slips As Integer
' Найти позицию с минимальной и максимальной прибылью.
max_profit = Items(1).Profit
min_profit = max_profit
For i = 2 To NumItems
If max_profit < Items(i).Profit Then max_profit = Items(i).Profit
If min_profit > Items(i).Profit Then min_profit = Items(i).Profit
Next i
t = 0.75 * (max_profit - min_profit)
back_slips = 0
' Выбрать случайное пробное решение
' в качестве начальной точки.
Do While AddToSolution()
' Вся работа выполняется в процедуре AddToSolution.
Loop
' Использовать в качестве пробного решения.
best_profit = test_profit
best_cost = test_cost
For i = 1 To NumItems
best_solution(i) = test_solution(i)
Next i
' Повторять, пока в течение max_non_changes изменений
' подряд не будет улучшений.
non_changes = 0
Do While non_changes < max_non_changes
' Удалить случайную позицию.
For i = 1 To K
RemoveFromSolution
Next i
' Добавить максимально возможное число позиций.
Do While AddToSolution()
' Вся работа выполняется в процедуре AddToSolution.
Loop
' Если изменение улучшает пробное решение, сохранить его.
' Иначе вернуть прежнее значение решения.
If test_profit > best_profit Then
doit = True
ElseIf test_profit < best_profit Then
doit = (Rnd < Exp((test_profit - best_profit) / t))
back_slips = back_slips + 1
If back_slips > max_back_slips Then
back_slips = 0
t = t * TFACTOR
End If
Else
doit = False
End If
If doit Then
' Сохранить улучшение.
best_profit = test_profit
best_cost = test_cost
For i = 1 To NumItems
best_solution(i) = test_solution(i)
Next i
non_changes = 0 ' Хорошее изменение.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82