RSS    

   Реферат: Реляционное исчисление

        <реляционная операция>

                 : : =       <прототип кортежа> [ WHERE <логическое выражение> ]

        <прототип кортежа>

                 : : =       <выражение кортежа>

        Напоминаем также, что следующие синтаксические правила теперь несколько упрощены.

-   Во-первых, все ссылки на переменные кортежей в параметре <прототип кортежа> должны быть свободными в пределах значения этого параметра.

-   Во-вторых, ссылка на переменную кортежа в предложении WHERE может быть свободной только в случае, если на эту же переменную (обязательно свободная) присутствует  в соответствующем значении параметра <прототип кортежа>.

        Например, следующее выражение является допустимым значением параметра <реляционная операция> («Получить номера поставщиков, находящихся в Лондоне»).

        SX.S# WHERE SX.CITY = ‘London’

        Здесь ссылка на переменную SX в прототипе кортежа является свободной. Ссылка на переменную SX в предложении WHERE также является свободной, поскольку ссылка на ту же переменную (обязательно свободную) имеется и в значении параметра <прототип кортежа> этого выражения.

        Замечание. Далее термин «прототип кортежа» будет употребляться без скобок.

        Приведём другой пример («Получить имена поставщиков детали с номером ‘P2’»)

        SX.SNAME WHERE EXISTS SPX (SPX.S# SX.S# AND

                                                                     SPX.P# = P# (‘P2’) )

        Здесь все ссылки на переменную SX являются свободными, тогда как все ссылки на переменную SPX (в предложении WHERE) являются связанными, как и должно быть, поскольку на них нет ссылок в прототипе кортежа.

         Интуитивно понятно, что результатом выполнения операции, заданной параметром <реляционная операция>, будет отношение, содержащее все возможные значения кортежей, определяемых параметром <прототип кортежа>, для которых результат вычисления логического выражения, заданного в предложении WHERE параметром <логическое выражение>, принимает значение истина. (Если предложение WHERE опущено, это эквивалентно указанию выражения WHERE true.) Сделаем некоторые уточнения.

-   Прежде всего, прототип кортежа ─ это список разделённых запятыми элементов (возможно, заключённый в скобки), каждый элемент которого является либо ссылкой на атрибут кортежа (который может содержать предложение AS для введения нового имени атрибута), либо просто именем переменной кортежа. Тем не менее отметим следующее.

а)    В этом контексте имя переменной кортежа чаще всего является сокращённым обозначением списка разделённых запятыми ссылок на атрибуты, по одной для каждого атрибута отношения, на котором задана данная переменная кортежа.

б)    Ссылка на атрибут кортежа без предложения AS, в принципе, является сокращённым обозначением ссылки с предложением AS, в которой новое имя атрибута совпадает со старым.

Следовательно, без потери общности прототип кортежа можно рассматривать как список, состоящий из разделённых запятыми ссылок на атрибуты в виде Vi.Ai AS Bj. Обратите внимание, что ссылки Vi- и Aj-е могут повторяться, тогда как ссылки Bj-е должны быть разными.  

-   Пусть V1, V2, … ,Vm будут различными переменными кортежей, упоминаемыми в прототипе кортежа, и пусть эти переменные будут определены на отношениях r1, r2, … ,rm соответственно. Примем, что r1’, r2’, … ,rm’ ─ это новые отношения, полученные после переименования атрибутов в предложении AS, и пусть r’ ─ это декартово произведение отношений r1’, r2’, … , rm’.

-   Пусть отношение r ─ это выборка из отношения r’, удовлетворяющая формуле WFF в предложении WHERE.                                                                                                                                                                             

Замечание. Здесь предполагается, что на предыдущем шаге были также переименованы атрибуты, упоминающиеся в предложении WHERE; в противном случае функция WFF в предложении WHERE может не иметь смысла.

-   Конечное значение реляционной операции, заданной параметром <реляционное выражение>, определяется как проекция отношения r по всем заданным атрибутам Bj.

                                                   2.7. Примеры.

       Представляем несколько примеров использования реляционного исчисления кортежей для формулирования запросов.

Ø  Определить имена поставщиков детали с номером ‘P2’                                                                                       

SX

WHERE EXISTS SPX (SPX.S# = SX.S# AND

                                        SPX.P# = P# (‘P2’) )

         Обратите внимание на использование имени переменной кортежа в прототипе кортежа. Этот пример является сокращённой записью следующего выражения.

(SX.S#, SX.NAME, SX.STATUS, SX.CITY)

WHERE EXISTS SPX (SPX.S# = SX.S# AND

                                        SPX.P# = P# (‘P2’) )

Этот же пример решённый средствами реляционной алгебры выглядит так

( (SP JOIN S) WHERE P# =’P2’) {SNAME}

Ø  Определить имена поставщиков по крайней мере одной красной детали

SX.SNAME

WHERE EXISTS SPX (SX.S# = SPX.S# AND

                                        EXISTS PX (PX.P# = SPX.P# AND

                                                              PX.COLOR = COLOR (‘Red’) ) )

Этот же пример решённый средствами реляционной алгебры выглядит так

( ( ( P WHERE COLOR = COLOR (‘Red’) )

                                            JOIN SP) {S#} JOIN S) {SNAME}

  3. Сравнительный анализ реляционного исчисления и           реляционной алгебры.

         В начале утверждалось, что реляционная алгебра и реляционное исчисление в своей основе эквивалентны. Осудим это утверждение более подробно. Вначале Кодд показал, что алгебра по крайней мере мощнее исчисления. Он сделал это, придумав алгоритм, называемый алгоритмом редукции Кодда, с помощью которого любое выражение исчисления можно преобразовать в семантически эквивалентное выражение алгебры. Мы не станем приводить здесь этот алгоритм полностью, а ограничимся довольно сложным примером, иллюстрирующим в общих чертах, как он функционирует.

                                                                                                           

S# SNAME STATUS CITY
S1 Smith 20 London
S2 Jones 10 Paris
S3 Black 30 Paris
S4 Clark 20 London
S5 Adams 30 Athens
S# P# J# QTY
S1 P1 J1 200
S1 P1 J4 700
S2 P3 J1 400
S2 P3 J2 200
S2 P3 J3 200
S2 P3 J4 500
S2 P3 J5 600
S2 P3 J6 400
S2 P3 J7 800
S2 P5 J2 100
S3 P3 J1 200
S3 P4 J2 500
S4 P6 J3 300
S4 P6 J7 300
S5 P2 J2 200
S5 P2 J4 100
S5 P5 J5 500
S5 P5 J7 100
S5 P6 J2 200
S5 P1 J4 100
S5 P3 J4 200
S5 P4 J4 800
S5 P5 J4 400
S5 P6 J4 500
P# PNAME COLOR WEIGHT CITY
P1 Nut Red 12.0 London
P2 Bolt Green 17.0 Paris
P3 Screw Blue 17.0 Rome
P4 Screw Red 14.0 London
P5 Cam Blue 12.0 Paris
P6 Cog Red 19.0 London

 

Страницы: 1, 2, 3, 4, 5, 6, 7


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.