RSS    

   Дипломная работа: Співвідношення особливостей накопичення важких металів в овочах та фруктах в умовах великого міста

П - помірна

Н - низька

В якості граничного навантаження забруднення ґрунтів металами слід роздивляти той рівень, коли вміст їх в рослинності (їстівних частинах) перевищує відповідні норми ГДК, затвердженні для продуктів харчування.

Оцінка забруднювання ґрунтів групою важких металів виконується відповідно з методикою на основі використання сумарного показника забруднення ґрунтів Zc. При цьому значення Zc зіставляється з орієнтувальною шкалою загрози забруднення, маючий градації допустимої (до16), помірно небезпечної (до32), небезпечної (до 128), та надзвичайно небезпечної (вище 128) категорій забруднення, що статистично пов’язано із зміною показників здоров’я населення в зонах забруднення .

В ході роботи був проведений аналіз літературних джерел з означеної тематики, а також проведено ряд польових і лабораторних досліджень.

Польові дослідження полягали у відборі проб ґрунту (чорнозем опідзолений) і плодів яблуні.

Дуже важливим є правильно відібрати проби ґрунту та рослин до аналізу. Так встановлено, що техногенні викиди, забруднюючі ґрунтовий покрив через атмосферу, зосереджуються в поверхневих шарах ґрунту. Важкі метали сорбуються, як правило, в перших 2…5 см від поверхні. Забруднення нижчих горизонтів відбувається в результаті обробки ґрунтів (оранки, культивації), а також внаслідок дифузійного і конвективного переносу через тріщини, ходи ґрунтових тварин і рослин. Тому найбільш чітка картина забрудненості ґрунтового покриву важкими  металами може бути отримана при відборі проб з глибин 0…10 и 0…25 см [16]. Проби ґрунтів відбиралися на глибині 0- 25 см.

Бралися проби на відстані 1 м від ствола яблуні, та 50см від кущів вовчої ягоди. Відібрані проби зсипалися на папір, потім перемішувалися. Ділилися на кілька частин із центрів яких бралися приблизно однокова кількість ґрунту і насипалася в мішечок. Маса отриманого початкового зразка ґрунту складала 400…500 г.

Початкові проби повинні аналізуватися в природному стані. Якщо по якимось причинам провести аналіз на протязі одної доби не є можливим, то проби висушуються до повітряно–сухого стану в захищених від сонця місцях. В лабораторії з повітряно–сухого зразка методом квартування береться середня проба масою 0,2 кг. З нього видаляються корні, камені, потім вона розтирається в фарфоровій ступці та просіюється через сито з отворами діаметром 0,5 мм, після чого з неї беруть навісі по 10…50 г для хімічного аналізу.

Необхідно відмітити, що характер забруднення рослин змінюється в період їх росту. Так, в період інтенсивного росту рослин площа листової поверхні швидко збільшується та концентрація металів на ній, як правило, невелика. Положення трохи змінюється наприкінці вегетації, коли асиміляціонний апарат вже сформовано та осідання забруднень на його поверхню носить акумулятивний характер; коли концентрація металів значно збільшується. Тому відбір рослин з метою визначення в них важких металів с придорожніх ділянок, поблизу автодоріг, проводився наприкінці вегетаційного періоду.

У зв’язку з тим що для аналізу потрібна середня проба фруктової продукції було знято весь урожай зі кущів вовчих ягід та дикої яблуні і відібрана проба масою приблизно 1кг із плодів, які достатньо розвинені, здорові, свіжі, цілі, зрілі, без механічних пошкоджень та не ушкоджених шкідниками. Потім фрукти звільняють від неїстівної частини (плодоніжок, кісточок), подрібнювачем підготовлюємо 10-15 г зразку, поміщаємо в порцелянову чашку. Чашку ставимо в сушильну шафу при температурі 90-100 С висушуємо всю вологу частину проби. Зразки охолоджують в ексикаторі (товтостінна скляна чаша без доступу вологи з повітря). Після охолодження пробу перетирають порцеляновим пестом .

Для аналізу ґрунтів та плодів рослин використовувався атомно–абсорбційний спектрофотометр. Атомно – абсорбційний спектрофотометр має цілий ряд переваг: чутливість, висока продуктивність, достатньо гарна відтворюваність результатів та простота виконання аналізів.

Атомно-абсорбційний аналіз був запропонований в 1955 році та зразу знайшов широке застосування при досліджені ґрунтів, рослин та добрив. Цей метод аналізу забезпечує межу виявлення багатьох елементів на рівні 0,1 – 0,01 мкг/мл, що в багатьох випадках надає можливість аналізувати ґрунти та рослини без попереднього концентрування елементів. Метод дозволяє у теперішній час визначати до 70 елементів, переважно металів.

При контролі забруднення природних об’єктів важкими металами, а також для вивчення їх поведінки в ґрунтах та рослинах атомно–абсорбційний метод став практично основним в цих дослідженнях. Він дозволяє порівняно просто визначать, використовуючи в якості палива ацетилен чи пропан, слідуючи елементи: Ca, Mg, Cu, Zn, Fe,Cu, Cr, Ni, Pb, Cd, As, Hg, Se. Однак їм неможливо визначити основні біогенні елементи – N, P, S та інші.

Спектрофотометр представляє собою лабораторний стаціонарний показуючий і самописний прилад періодичної дії.

Робота спектрофотометра основана на атомно-абсорбційному методі спектрального аналізу: переводі аналізованої рідини в атомарний стан с послідуючим вимірюванням оптичної щільності атомних парів визначеного елементу в визначеному спектральному діапазоні .

Конструкція і схема спектрофотометру допускає його роботу в емісійному методі, який заснований на переводі аналізованій пробі в атомарний стан, збудженні атомних парів в полум’ї і послідуючим фотоелектричним перетворенні випромінювання цих парів в електричний сигнал.

Атомно-абсорбційний метод відрізняється від емісійного метода більш вираженою селективністю та збільшеною стабільністю показників, мало залежною від інтенсивності полум’я і від зміни його температури. Якщо вірогідність накладення ліній в емісійному спектральному аналізі дорівнює 2,5%, то при атомно-абсорбційному в тих же умовах вона дорівнює 0,04%. В полум’ї спеціальної горілки атомно-абсорбційного аналізатора відбувається випарювання розчину, подаваного у виді аерозолю разом з паливним газом та окислювачем, при цьому плавиться та випарюється розчинена проба, відбувається термічна дисоціація молекул та утворювання незалежних атомів. Важливо, щоб при цьому більшість атомів знаходилась в нормальному, не збудженому стані. Такі атоми здатні поглинати випромінювання зовнішнього стандартного джерела світу, якщо ця енергія буде сприяти переходу енергії атому з нижчого енергетичного стану (основного) на більш високе.

Світовий потік від спектральної лампи проходу через полум’я горілки та монохроматор. Між полум’ям та монохроматором міститься діафрагма, що дозволяє зменшувати щілину, через яку світло проходе на монохроматор, а від нього – на фотоелектричний детектор. Сигнал, що надходить з детектора, посилюється спеціальним підсилювачем та регіструється стрілочним гальванометром.


РОЗДІЛ 3

АНАЛІЗ ТА УЗАГАЛЬНЕННЯ РЕЗУЛЬТАТІВ ДОСЛІДЖЕННЯ ЩОДО НАКОПИЧЕННЯ ХІМІЧНИХ ЕЛЕМЕНТІВ В ҐРУНТАХ ТА ФРУКТАХ

Аналіз зразків ґрунтів та фруктів проводився у Ленінському районі м. Харкова на території парку «Юність» в період 2008 – 2009 років. Точка відбору знаходиться на боровій терасі річки Уди, у Лісостеповому грунтовому районі. На відстані 50 метрів від автошляху з інтенсивнітю руху 3-5тис. автомобілів на годину. Неподалік від місця відбору проб розташовані підприємства, викиди яких забруднюють повітря досліджуємого району, це завод «Харпластмас» (викидає у атмосферне повітря 7,4 т/рік речовин II кл.небезпеки, 5,1 т/рік речовин III кл.небезпеки, 2,6 т/рік речовин IV кл.небезпеки, усього 15,1 т/рік); Харківський завод електромонтажних виробів (викидає у атмосферне повітря 0,001 т/рік речовин Iкл.небезпеки, 2,98 т/рік речовин II кл.небезпеки, 15,84 т/рік речовин III кл.небезпеки, 15,9 т/рік речовин IV кл.небезпеки, усього 34,72 т/рік); АТ “Експериментальний завод” (викидає у атмосферне повітря 0,00026 т/рік речовин Iкл.небезпеки, 0,055 т/рік речовин II кл.небезпеки, 23,15 т/рік речовин III кл.небезпеки, 7,15 т/рік речовин IV кл.небезпеки, усього 30,35 т/рік), що негативно впливає на рослинність та оточуюче середовище поблизу них.

Для аналізу були зібрані плоди яблук диких і вовчих ягід вороняче око та ґрунтів з-під цих рослин. Зразки грунту чорнозему опідзоленого було відібрано під деревами в радіусі 1 метра віл стовбура, та під кущами в радіусі 50 см.

Було визначено вміст важких металів в цих пробах.

Вміст важких металів у шарі ґрунту 0-30 см , що відібрано з-під яблуні та з-під вовчих ягід у 2008 році , наведено в таблиці 3.1

Таблиця 3.1

Вміст хімічних елементів у шарі ґрунту 0-30см, відібраного у 2008 році, мг/кг [за автором]

Елемент Fe Mn Zn Cu Ni Pb Al Co Cr Cd

Грунт

 з-під яблуні

3,6 4,2 7,4 3,0 3,0 0,7 4,2 1,6 0,96 0,14

Грунт

з-під вовчих ягід

3,2 5,0 7,0 2,74 2,8 0,5 3,3 1,45 0,7 0,9
ГДК - - 37,0 3,0 4,0 6,0 - 5,0 6,0 -
ФОН 2,0 43,0 1,0 0,5 1,0 0,5 4,4 - 0,1 0,1

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.