RSS    

   Построение графика функции различными методами (самостоятельная работа учащихся) - (диплом)

p>Функция не определена только в точке х=0, т. е. D(f)=(- ; 0)И(0; + ).

Множество D(f) является симметричным; кроме того f(-х)=((-х)2-1)/-х=-(x2-1)/-х=-f(х). Значит, y=f(x) –нечетная функция. Поэтому график симметричен относительно начала координат и для дальнейшего исследования можно ограничится промежутком (0; + ), что мы и сделаем.

    Функция непериодическая.

Найдем точки пересечения графика с положительным лучом оси Ох. Из уравнения ( x2-1)/x=0находим x=1 (корень х=-1 пока не принемаем во внимание). Итак, точка пересичения с осью Ох– точку (1; 0).

С осью Оу график не пересекается, т. к. точка х=0 не принадлежит к области определения функции: 0 D(f).

Находим промежутки знакопостоянства: (0; 1) и (1; + ). В первом из них f(x)0/

На рисунке представлена геометрическая иллюстрация тех сведений о графике, которыми мы располагаем к настоящему моменту.

Изучим поведение функции вблизи границ области определения, т. е. вблизи точки ноль и при х®+ . Если х®0 (напомним, что мы рассматриваем случай где х>0), то (x2-1)/x®. Если же х®+ , то ( x2-1)/x=х-1/х®+ .

Прямая х=0 является вертикальной асимптотой. Далее, т. к. степень числителя выражается(x2-1)/x на единицу больше степени знаменателя, то должна существовать и наклонная асимптота. В самом деле, поскольку(x2-1)/x=х-1/х и 1/х стремятся к нулю при х®+ , наклонной асимптотой служит прямая у=х.

    Исследуем функцию на экстремум; имеем
    y’=((x2-1)/x)’=([-1/x)’=1+1/ x2.

Замечаем, что у’>0при любых х. Значит на луче (0; + ) функция возрастает и экстремумов не имеет.

    Составим таблицу значения функции:
    x
    1
    0. 5
    0. 25
    2
    3
    4
    y
    0
    -1. 5
    -3. 75
    1. 5
    2. 67
    3. 75

отметив найденные точки на координатной плоскости и учитывая результаты исследования, строим ветвь графика при х>0, смотри рисунок. Т. к. график функции y=(x2-1)/x, симметричен относительно начала координат, то добавив к построенной ветви симметричную ей относительно начала координат, получим искомый график. Глава 3. ФОРМИРОВАНИЕ УМЕНИЯ

САМОСТОЯТЕЛЬНОЙ РАБОТЫ ПРИ ИЗУЧЕНИИ ФУНКЦИЙ В ШКОЛЬНОМ КУРСЕ МАТЕМАТИКИ

В настоящее время каждый учитель математики ставит перед собой задачу не только сообщить школьникам определенную сумму знаний, наполнить их память некоторым набором фактов и теорем, но и научить учащихся думать, развить их мысль, творческую инициативу, самостоятельность. Привитие ученикам навыков самостоятельной работы, умения ориентироваться в поступающей информации, умения самостоятельно пополнять свои знания—это сложный и длительный процесс, требующий специально организованной и целенаправленной работы учителя, в которой, так же как и в любой другой работе. выделяются определенные этапы.

Среди совокупности умений и способов деятельности, которыми овладевают учащиеся при изучении математики, существуют такие, которыми должен прочно овладеть каждый ученик, для того чтобы учебный процесс протекал нормально.

Изучению функций и их свойств посвящена значительная часть курса алгебры. И это не случайно. Понятие функции имеет огромное прикладное значение. Умения, приобретаемые школьниками при изучении функций, имеют прикладной и практический характер. Они широко используются при изучении, как курса математики, так и других школьных предметов—физики, химии, географии, биологии, находят широкое применение в практической деятельности человека. От того, как усвоены учащимися соответствующие умения, зависит успешность усвоения многих разделов школьного курса математики.

При выделении обязательных задач по теме «Функции», следует ориентироваться на то, что обучение в VI—VIII классах представляет собой не завершающий, а промежуточный этап в системе математического образования каждого школьника: На базе полученной им математической подготовки строится его дальнейшее обучение. Поэтому для определения реально необходимого уровня сформированности умений по каждому вопросу, в первую очередь, следует проанализировать характер и уровень использования этих умений на следующих ступенях обучения. Кроме того, важное значение имеет характер применения математических знаний учащихся в смежных школьных предметах.

Применительно к функциональному материалу естественным представляется проанализировать характер его применения в курсе алгебры и начал анализа, геометрии, а также школьного курса физики. Анализ теоретического и задачного материала этих курсов позволяет выделить две группы умений, за формированием которых следует тщательно следить при изучении всех видов конкретных функций, —умения работать с формулой, задающей функцию, и умения работать с графиком этой функции.

    К умениям работать с формулами относятся "следующие.

Если функции вида y=kx+b, у=k/x, y=ax2+bx+c, у=х3, y=Цx заданы формулами с конкретными значениями параметров, то учащиеся должны уметь: — указать область определения функции;

— вычислить значение функции, соответствующее заданному значению аргумента; —вычислить значение аргумента, при котором функция принимает заданное значение; — определить, принадлежит ли точка с заданными координатами графику функции,

Все эти умения широко используются в разной деятельности учащихся, входят в качестве составных в большое число других умений. Так, например, умение найти значение функции при заданном значении аргумента используется при построении графиков функций, нахождении наибольшего и наименьшего значений функции, вычислении пределов функций, интегралов и др. В курсе физики оно используется практически при изучении всех вопросов. Это так называемые вычисления по формулам: длины пройденного пути при равномерном прямолинейном движении, силы тока в проводнике, координаты тела при равномерном и равноускоренном движении и т... д. Умение записать нужное равенство, зная, что заданная точка принадлежит графику функции (а также графику уравнения), требуется учащимся, например, в курсе геометрии при выводе уравнений прямой, окружности, плоскости. Важнейшее значение в функциональной подготовке учащихся - имеет формирование графических умений. График —это средство наглядности, широко используемое при изучении многих вопросов в школе.

График функции выступает основным опорным образом при формировании целого ряда понятий—возрастания и убывания функции, четности и нечетности, обратимости функции, понятия экстремума. Без четких и сознательных представлений учащихся о графике невозможно привлечение геометрической наглядности при формировании таких центральных понятий курса алгебры и начал анализа, как непрерывность, производная, интеграл. Поэтому заниматься формированием графических представлений в старших классах уже поздно. К этому времени у учащихся должны быть выработаны прочные умения как в построении, так и в чтении графиков функций. Прежде всего учащиеся должны уметь свободно строить графики основных функций: y=kx+b, у=k/x, y=ax2+bx+c, (при конкретных значениях параметров), у=х3, y=Цx

Необходимой базой последующего применения функционального материала являются прочные самостоятельные умения учащихся в чтении графиков функций. Они должны уметь уверенно и свободно отвечать с помощью графика на целый ряд вопросов: , — по заданному значению одной из переменных х или у определить значение другой; — определять промежутки возрастания и убывания функции;

    — определять промежутки знакопостоянства;

—для квадратичной функции указывать значение аргумента, при котором функция принимает наибольшее (наименьшее) значение, а также определять это значение.

Ученики должны хорошо представлять себе вид графиков некоторых функций, а именно: у=х, у=—х, у=х2, и уметь без специального построения по точкам показать их расположение в координатной плоскости.

И наконец, учащиеся должны применять графики изученных перечисленных выше функций для графического решения уравнений, систем уравнений, неравенств видаf(x)і0.

Достижение„всеми учащимися выделенных результатов обучения требует специальной ориентации процесса обучения, серьезной и тщательной работы учителя по обеспечению такого усвоения. При этом правильно организованная работа по обучению учащихся решать основные типы задач не только не противоречит тезису о развитии самостоятельности учащихся в учебной деятельности, но и способствует такому развитию, закладывает основы обучения школьников обще учебным умениям, умениям самостоятельной работы. Остановимся на некоторых из этих вопросов.

Прежде всего, одним из условий эффективности этой работы являетсясвоевременное ознакомление учащихся с основными требованиями к их знаниям и умениям. Это может делаться в различной форме. Приступая к изучению какой-либо функции, целесообразно сообщить учащимся в самом общем виде, какими умениями они должны овладеть в обязательном порядке. Например, начав изучать функцию видаy=ax2+bx+c, можно указать учащимся, что усвоение этого материала будет оценено положительно только в

том случае, если они научатся строить график квадратичной функции и по графику отвечать на некоторые вопросы. В ходе изучения материала следует уточнить требования, конкретизировав их вторую часть. При этом, если имеется такая возможность, полезно указать номера упражнений, отражающих основные требования.

Сформировать прочные умения в построении и чтении графиков функций, добиться, чтобы каждый ученик мог выполнять основные виды заданий самостоятельно, можно только при условии выполнения учащимися достаточного числа тренировочных упражнений. Но было бы большой ошибкой, если бы эта работа ограничивалась только тренировкой. Обоснованность действий, сознательность при их выполнении, внимание к формированию умений обще учебного характера —непременное условие прочности в овладении умениями. Рассмотрим это на примере отработки умения строить графики функций.

Страницы: 1, 2, 3, 4, 5, 6, 7


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.