Дифференцированные уравнения - (курсовая)
p>2. Получим передаточную функцию для апериодического звена. Воспользуемся преобразованиями Лапласа:y(t)=Y(s)
=sY(s)
g(t)=G(s)
=sG(t)
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
sY(s)=k1sG(s)+kG(s)
W(s)= (4)
3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т. е. g(t)=1 или по преобразованиями Лапласа h(t)=H(s)
H(s)=W(s) =
Переходя к оригиналу, получим
h(t)= Ч 1(t) (5)
Функцию веса можно получить из преобразований Лапласа
w(t)=w(s)
w(s)=W(s)Ч1
W(s)=
Переходя к оригиналу, получим
w(t)= k1Чd(t)+kЧ1(t) (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на jw:
W(s)=
W(jw)= (7)
U(w)=k1
V(w)=
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т. е.
A(w)=ЅW(jw)Ѕ
A(w)=..................(8)
Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т. е.
j(w)=argW(jw)
j(w)=..................
j(w)=.................. (9)
Для построения логарифмических частотных характеристик вычислим L(w)=20lg A(w)
L(w)=20lg............
7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.
4. 3. 1. ДИФФЕРЕНЦИРУЮЩЕЕ ИДЕАЛЬНОЕ ЗВЕНО
1. Данное звено описывается следующим уравнением:
aoy(t)=b1 (1)
Коэффициенты имеют следующие значения:
ao=2
b1=4
Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao: y(t)=
y(t)=k (2),
где k=-коэффициент передачи.
Запишем исходное уравнение в операторной форме, используя подстановку p= . Получим: y(t)=kpg(t) (3)
2. Получим передаточную функцию для идеального звена. Воспользуемся преобразованиями Лапласа:
y(t)=Y(s)
g(t)=G(s)
=sG(s)
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
Y(s)=ksG(s)
W(s)=ks (4)
3. Найдем выражения для переходной функции и функции веса из преобразлваний Лапласа, т. е.
h(t)=H(s)
H(s)=W(s)=k
Переходя к оригиналу, получим
h(t)=kЧd(t) (5)
Функцию веса можно получить по преобразованию Лапласа из передаточной функции: w(t)=w(s)
w(s)=W(s)Ч1=ks
Переходя к оригиналу, получим
w(t)=k (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи и временные характеристики: 5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на jw:
W(s)=ks
W(jw)=jkw (7)
W(jw)=U(w)+jV(w)
U(w)=0
V(w)=kw
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т. е.
A(w)=ЅW(jw)Ѕ
A(w)=kЅwЅ (8)
Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т. е.
j(w)=argW(jw)
j(w)=arctgkw (9)
Для построения логарифмических частотных характеристик вычислим L(w)=20lg A(w)
L(w)=20lgkЅwЅ
7. Построим графики частотных характеристик. Для этого сначала получим их численные выражения.
4. 3. 2. ДИФФЕРЕНЦИРУЮЩЕЕ РЕАЛЬНОЕ ЗВЕНО
1. Данное звено описывается следующим уравнением:
a1 + aoy(t) =b1 (1)
Коэффициенты имеют следующие значения:
a1=1, 24
ao=2
b1=4
Запишем это уравнение в стандартной форме. Для этого разделим (1) на a1: +y(t)=
T+y(t)=k (2),
где k=-коэффициент передачи,
T1=-постоянная времени.
Запишем исходное уравнение в операторной форме, используя подстановку p= . Получим: (Tp+1)y(t)=kpg(t) (3)
2. Получим передаточную функцию для апериодического звена. Воспользуемся преобразованиями Лапласа:
y(t)=Y(s)
=sY(s)
g(t)=G(s)
=sG(s)
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
TsY(s)+Y(s)=ksG(s)
W(s)= (4)
3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т. е. g(t)=1 или по преобразованиями Лапласа h(t)=H(s)
H(s)=W(s)==
Переходя к оригиналу, получим
h(t)=Ч1(t) (5)
Функцию веса можно получить из преобразований Лапласа
w(t)=w(s)
w(s)=W(s)Ч1
W(s)= =
Переходя к оригиналу, получим
w(t)=Чd(t) e Ч1(t) (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на jw:
W(s)=
W(jw)=
W(jw)==
6. Найдем АЧХ:
A(w)=ЅW(jw)Ѕ
A(w)==
Найдем ФЧХ:
j(w)=argW(jw)
j(w)=arctgkw-arctgTw
L(w)=20lgA(w)
L(w)=20lg
4. 3. 3. ФОРСИРУЮЩЕЕ ЗВЕНО 1-го ПОРЯДКА
Данное звено описывается следующим уравнением:
a0y(t)=b1+b0g(t)
y(t)=+g(t)
k1=
k=
p=
y(t)=k1pg(t)+kg(t)
y(t)=Y(s)
g(t)=G(s)
Y(s)=k1sG(s)+kG(s)
W(s)=k1s+k
H(s)==k1+
h(t)=k1d(t)+k1(t)
W(jw)=k1jw+k
U(w)=k
V(w)=k1w
A(w)=ЅW(jw)Ѕ
A(w)=
j(w)=argW(jw)
j(w)=arctg
L(w)=20lgA(w)
L(w)=20lg
4. 3. 4. ФОРСИРУЮЩЕЕ ЗВЕНО 2-го ПОРЯДКА
a0y(t)=b2+b1+b0g(t)
y(t)=++g(t)
y(t)=k2+k1+kg(t)
y(t)=k2p2g(t)+k1pg(t)+kg(t)
Y(s)=(k2s2+k1s+k)G(s)
W(s)=k2s2+k1s+k
H(s)=k2s+k1+
h(t)=k2+k1d(t)+k11(t)
w(s)=W(s)=k2s2+k1s+k
w(t)=k2+k1+kd(t)
W(jw)=k1jw+k - k2w2
U(w)=k - k2w2
V(w)=k1jw
A(w)=
j(w)=arctg
L(w)=20lg