RSS    

   Билеты по биологии 11 класс

1. Индивидуальное развитие организма (онтогенез) — период жизни,

который при половом размножении начинается с образования зиготы,

характеризуется необратимыми изменениями (увеличением массы, размеров,

появлением новых тканей и органов) и завершается смертью.

2. Зародышевый (эмбриональный) и послезаро-дышевый (постэмбриональный)

периоды индивидуального развития организма.

3. Послезародышевое развитие (приходит на смену зародышевому) — период от

рождения или выхода зародыша из яйца до смерти. Различные пути

послезародышевого развития животных — прямое и непрямое:

1) прямое развитие — рождение потомства, внешне похожего на взрослый

организм. Примеры: развитие рыб, пресмыкающихся, птиц, млекопитающих,

некоторых видов насекомых. Так, малек рыбы похож на взрослую рыбу, утенок

на утку, котенок на кошку;

2) непрямое развитие — рождение или выход из яйца потомства, отличающегося

от взрослого организма но морфологическим признакам, образу жизни (типу

питания, характеру передвижения). Пример: из яиц майского жука появляются

червеобразные личинки, живут в почве и питаются корнями в отличие от

взрослого жука (живет на дереве, питается листьями).

Стадии непрямого развития насекомых: яйцо, личинка, куколка, взрослая

особь. Особенности жизни животных на стадии яйца и куколки — они

неподвижны. Активный образ жизни личинки и взрослого организма, разные

условия обитания, использование разной пищи.

4. Значение непрямого развития — ослабление конкуренции между родителями и

потомством, так как они поедают разную пищу, у них разные места обитания.

Непрямое развитие — важное приспособление, возникшее в процессе эволюции.

Оно способ ствует ослаблению борьбы за существование между родителями и

потомством, выживанию животных на ранних стадиях послезародышевого

развития.

2. 1. Изучение Г. Менделем наследственности с помощью

гибридологического метода — скрещивания родительских форм, различающихся по

определенным признакам, и изучение характера их наследования в ряду

поколений.

2. Скрещивание гомозиготной доминантной и рецессивной особей, появление в

первом гибридном поколении всех особей с доминантным признаком. Причина:

все гибридные особи имеют гетерозиготный генотип, например, Аа, в котором

доминантный ген подавляет рецессивный.

3. Проявление закона расщепления при скрещивании между собой гибридов

первого поколения Аа хАа. Дальнейшее размножение гибридов — причина

расщепления, появления в потомстве F2 особей с рецессивными признаками,

составляющих примерно четвертую часть от всего потомства.

4. Причины отсутствия расщепления во втором и последующих поколениях

гомозиготных рецессивных особей — образование гамет одного типа, наличие в

них лишь рецессивного гена, например, гамет с генами а. Слияние при

оплодотворении мужской и женской гамет с генами а и а — причина образования

гомозиготного потомства с рецессивным генотипом — аа.

5. Гомозиготы — организмы, содержащие в клетках два одинаковых гена по

данному признаку (АА либо аа), отсутствие у них расщепления признаков в

последующих поколениях. Гетерозиготы — организмы, содержащие в клетках

разные гены по какому-либо признаку (Аа), дающие расщепление признаков в

последующих поколениях.

3. Надо исходить из того, что ДНК служит матрицей для иРНК, она

обеспечивает последовательность нуклеотидов в иРНК. Двойная спираль ДНК с

помощью ферментов разъединяется, к одной ее цепи поступают нуклеотиды. На

основе принципа дополнительности нуклеотиды располагаются и фиксируются на

матрице ДНК в строго определенной последовательности. Так, к нуклеотиду Ц

всегда присоединяется нуклеотид Г или наоборот: к Г — Ц, а к нуклеотиду А —

У (в РНК вместо тимина нуклеотид урацил). Затем нуклеотиды соединяются

между собой и молекула иРНК сходит с матрицы.

Билет № 16

1. 1. Ген — отрезок молекулы ДНК, носитель наследственной информации

о первичной структуре одного белка. Локализация в одной молекуле ДНК

нескольких сотен генов. Каждая молекула ДНК — носитель наследственной

информации о первичной структуре сотен молекул белка.

2. Хромосома — важная составная часть ядра, состоящая из одной молекулы ДНК

в соединении с молекулами белка. Следовательно, хромосомы — носители

наследственной информации. Число, форма и размеры хромосом — главный

признак, генетический критерий вида. Изменение числа, формы или размера

хромосом — причина мутаций, которые часто вредны для организма.

3. Высокая активность деспирализованных хромосом в период интерфазы.

Самоудвоение молекул ДНК, их участие в синтезе иРНК, белка.

4. Ген (отрезок молекулы ДНК) — матрица для синтеза иРНК, а иРНК — матрица

для синтеза белка. Матричный характер реакций самоудвоения молекул ДНК,

синтеза иРНК, белка — основа передачи наследственной информации от гена к

признаку, который определяется молекулами белка. Многообразие белков, их

специфичность, многофункциональность — основа формирования различных

признаков у организма, реализации заложенной в генах наследственной

информации.

5. Самоудвоение хромосом, сиирализация, четкий механизм их распределения

между дочерними клетками в процессе митоза — путь передачи наследственной

информации от материнской к дочерним клеткам.

6. Путь передачи наследственной информации от родителей потомству:

образование половых клеток с гаплоидным набором хромосом, оплодотворение,

образование зиготы — первой клетки Дочернего организма с диплоидным набором

хромосом.

2. 1. Многообразие видов растений, животных и других организмов, их

закономерное расселение в природе, возникновение в процессе эволюции

относительно постоянных природных комплексов.

2. Биогеоценоз (экосистема) — совокупность взаимосвязанных видов

(популяций разных видов), длительное время обитающих на определенной

территории с относительно однородными условиями. Лес, луг, водоем, степь —

примеры экосистем.

3. Автотрофный и гетеротрофный способы питания организмов, получения ими

энергии. Характер питания — основа связей между особями разных популяций в

биогеоценозе. Использование автотрофами (в основном растениями)

неорганических веществ и солнечной энергии, создание из них органических

веществ. Использование гете-ротрофами (животными, грибами, большинством

бактерий) готовых органических веществ, синтезированных автотрофами, и

заключенной в них энергии.

4. Организмы — производители органического вещества, потребители и

разрушители — основные звенья биогеоценоза. 1) Организмы-производители —

автотрофы, в основном растения, создающие органические вещества из

неорганических с использованием энергии света; 2) организмы-потребители —

гетеротрофы, питаются готовыми органическими веществами и используют

заключенную в них энергию (животные, грибы, большинство бактерий); 3)

организмы-разрушители — гетеротрофы, питаются остатками растений и

животных, разрушают органические вещества до неорганических (бактерии,

грибы).

5. Взаимосвязь организмов — производителей, потребителей, разрушителей в

биогеоценозе. Пищевые связи — основа круговорота веществ и превращения

энергии в биогеоценозе. Цепи питания — пути передачи вещества и энергии в

биогеоценозе. Пример: растения —» растительноядное животное (заяц) —»

хищник (волк). Звенья в цепи питания (трофические уровни): первое —

растения, второе — растительноядные животные, третьи — хищники.

6. Растения — начальное звено цепей питания благодаря их способности

создавать органические вещества из неорганических с использованием

солнечной энергии. Разветвленность цепей питания: особи одного трофического

уровня (производители) служат пищей для организмов нескольких видов другого

трофического уровня (потребителей).

7. Саморегуляция в биогеоценозах — поддержание численности особей каждого

вида на определенном, относительно постоянном уровне. Саморегуляция —

причина устойчивости биогеоценоза. Его зависимость от разнообразия

обитающих видов, многообразия цепей питания, полноты круговорота веществ и

превращения энергии.

3. Надо учитывать, что наследование признаков, контролируемых

генами, расположенными в Х-хро-мосоме, будет происходить иначе, чем

контролируемых генами, находящимися в аутосомах. Например, наследование

гена гемофилии связано с ЛГ-хромосо-мой, в которой он расположен.

Доминантный ген Н обеспечивает свертываемость крови, а рецессивный ген h —

несвертываемость. Если женщина имеет в клетках два гена hh, то у нее

проявляется болезнь, если Hh — болезнь не проявляется, но она является

носителем гена гемофилии. У мужчин гемофилия проявляется при наличии одного

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.