RSS    

   Билеты по биологии 11 класс

растения —» рыбы; органические остатки —> моллюски. Небольшое число звеньев

в цепи питания объясняется тем, что в ней обитает мало видов, численность

каждого вида небольшая, мало пищи, кислорода, в соответствии с правилом

экологической пирамиды потеря энергии от звена к звену составляет около

90%.

Билет № 9

1. 1. Пластический обмен — совокупность реакций синтеза органических

веществ в клетке с использованием энергии. Синтез белков из аминокислот,

жиров из глицерина и жирных кислот — примеры биосинтеза в клетке.

2. Значение пластического обмена: обеспечение клетки строительным

материалом для создания клеточных структур; органическими веществами,

которые используются в энергетическом обмене.

3. Фотосинтез и биосинтез белков — примеры пластического обмена. Роль

ядра, рибосом, эндоплазматической сети в биосинтезе белка. Ферментативный

характер реакций биосинтеза, участие в нем разнообразных ферментов.

Молекулы АТФ — источник энергии для биосинтеза.

4. Матричный характер реакций синтеза белков и нуклеиновых кислот в

клетке. Последовательность нуклеотидов в молекуле ДНК — матричная основа

для расположения нуклеотидов в молекуле иРНК, а последовательность

нуклеотидов в молекуле иРНК — матричная основа для расположения аминокислот

в молекуле белка в определенном порядке.

5. Этапы биосинтеза белка:

1) транскрипция — переписывание в ядре информации о структуре белка с ДНК

на иРНК. Значение дополнительности азотистых оснований в этом процессе.

Молекула иРНК — копия одного гена, содержащего информацию о структуре

одного белка. Генетический код — последовательность нуклеотидов в молекуле

ДНК, которая определяет последовательность аминокислот в молекуле белка.

Кодирование аминокислот триплетами — тремя рядом расположенными

нуклеотидами;

2) перемещение иРНК из ядра к рибосоме, нанизывание рибосом на иРНК.

Расположение в месте контакта иРНК и рибосомы двух триплетов, к одному из

которых подходит тРНК с аминокислотой. Дополнительность нуклеотидов иРНК и

тРНК — основа взаимодействия аминокислот. Передвижение рибосомы на новый

участок иРНК, содержащий два триплета, и повторение всех процессов:

доставка новых аминокислот, их соединение с фрагментом молекулы белка.

Движение рибосомы до конца иРНК и завершение синтеза всей молекулы белка.

6. Высокая скорость реакций биосинтеза белка в клетке. Согласованность

процессов в ядре, цитоплазме, рибосомах — доказательство целостности

клетки. Сходство процесса биосинтеза белка в клетках растений, животных и

др. — доказательство их родства, единства органического мира.

2. 1. Наследственная изменчивость — свойство организмов приобретать

новые признаки в процессе онтогенеза и передавать их потомству. Виды

наследственной изменчивости — мутационная и комби-нативная. Материальные

основы наследственной изменчивости — изменение генов, генотипа; ее

индивидуальный характер (проявление у отдельных особей), необратимость,

передача по наследству.

2. Комбинативная изменчивость — результат перекомбинации генов при

скрещивании организмов. Причины перекомбинации генов — перекрест и обмен

участками гомологичных хромосом, случайный характер распределения хромосом

между дочерними клетками в ходе мейоза, случайное сочетание гамет при

оплодотворении, взаимодействие генов. Пример: появление дрозофил с темным

телом и длинными крыльями при скрещивании серых дрозофил с длинными

крыльями с темными дрозофилами с короткими крыльями.

3. Мутационная изменчивость — внезапное, случайное возникновение стойких

изменений генетического аппарата, вызывающее появление новых признаков в

фенотипе. Примеры: шестипалая рука, альбиносы. Виды мутаций — генные

(изменение последовательности нуклеотидов в гене) и хромосомные (увеличение

или уменьшение числа хромосом, потеря их части). Последствия генных и

хромосомных мутаций — синтез новых белков, а значит, и появление новых

признаков у организмов, которые чаще всего ведут к снижению

жизнеспособности, а иногда и к смерти.

4. Полиплоидия — наследственная изменчивость, вызванная кратным

увеличением числа хромосом. При этом увеличиваются размеры, масса, число

семян и плодов у растения. Причины — нарушение процессов митоза или мейоза,

нерасхождение хромосом в дочерние клетки. Широкое распространение в природе

полиплоидии у растений. Получение полиплоидных сортов растений, их высокая

урожайность.

5. Соматические мутации — изменение генов или хромосом в соматических

клетках, возникновение изменений в той части организма, которая 6.

Митохондрии — органоиды, отграниченные от цитоплазмы двумя мембранами. В

них с участием ферментов окисляются органические вещества и синтезируются

молекулы АТФ. Увеличение поверхности внутренней мембраны, на которой

расположены ферменты, за счет крист. АТФ — богатое энергией органическое

вещество.

7. Пластиды (хлоропласты, лейкопласты, хромопласты), их содержание в

клетке — главная особенность растительного организма. Хлоропласты —

пластиды, содержащие зеленый пигмент хлорофилл, который поглощает энергию

света и использует ее на синтез органических веществ из углекислого газа и

воды. Отграничение хлоропластов от цитоплазмы двумя мембранами,

многочисленные выросты — граны на внутренней мембране, в которых

расположены молекулы хлорофилла и ферменты.

8. Комплекс Гольджи — система полостей, отграниченных от цитоплазмы

мембраной. Накапливание в них белков, жиров и углеводов. Осуществление на

мембранах синтеза жиров и углеводов.

9. Лизосомы — тельца, отграниченные от цитоплазмы одной мембраной.

Содержащиеся в них ферменты ускоряют реакцию расщепления сложных молекул до

простых: белков до аминокислот, сложных углеводов до простых, липидов до

глицерина и жирных кислот, а также разрушают отмершие части клетки, целые

клетки.

10. Вакуоли — полости в цитоплазме, заполненные клеточным соком, место

накопления запасных питательных веществ, вредных веществ; они регулируют

содержание воды в клетке.

11. Клеточные включения — капли и зерна запасных питательных веществ

(белки, жиры и углеводы).

12. Ядро — главная часть клетки, покрытая снаружи двухмембранной,

пронизанной порами ядерной оболочкой. Вещества поступают в ядро и удаляются

из него через поры. Хромосомы — носители наследственной информации о

признаках организма, основные структуры ядра, каждая из которых состоит из

одной молекулы ДНК в соединении с белками. Ядро — место синтеза ДНК, иРНК,

рРНК.

2. Ароморфоз — крупное эволюционное изменение. Оно обеспечивает

повышение уровня организации оргзлизмов, преимущества в борьбе за

существование, возможность освоения новых сред обитания.

2. Факторы, вызывающие ароморфозы, — наследственная изменчивость, борьба

за существование и естественный отбор.

3. Основные ароморфозы в эволюции многоклеточных животных:

1) появление многоклеточных животных от одноклеточных, дифференциация

клеток и образование тканей;

2) формирование у животных двусторонней симметрии, передней и задней

частей тела, брюшной и спинной сторон тела в связи с разделением функций в

организме (ориентация в пространстве — передняя часть, защитная — спинная

сторона, передвижение — брюшная сторона);

3) возникновение бесчерепных, подобных современному ланцетнику, панцирных

рыб с костными челюстями, позволяющими активно охотиться и справляться с

добычей;

4) возникновение легких и появление легочного дыхания наряду с жаберным;

5) формирование скелета плавников с мышцами, подобных пятипалой конечности

наземных позвоночных, позволивших животным не только плавать, но и ползать

по дну, передвигаться по суше;

6) усложнение кровеносной системы от двухкамерного сердца, одного круга

кровообращения у рыб до четырехкамерного сердца, двух кругов кровообращения

у птиц и млекопитающих. Развитие нервной системы: паутинообразная у

кишечнопо-лостных, брюшная цепочка у кольчатых червей, трубчатая нервная

система, значительное развитие развилась из мутировавших клеток.

Соматические мутации потомству не передаются, они исчезают с гибелью

организма. Пример — белая прядь волос у человека.

3. Растения поглощают углекислый газ из окружающей среды и

используют его углерод в процессе фотосинтеза на создание органических

веществ. Их используют как сами растения, так и животные (рыбы, моллюски).

Они питаются ими, создают из них вещества, свойственные организму.

Органические вещества организмы используют в процессе дыхания, при этом в

окружающую среду выделяется углекислый газ. Расщепление мертвых остатков

микроорганизмами сопровождается выделением в атмосферу углекислого газа.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.