Билеты по биологии 11 класс
растения —» рыбы; органические остатки —> моллюски. Небольшое число звеньев
в цепи питания объясняется тем, что в ней обитает мало видов, численность
каждого вида небольшая, мало пищи, кислорода, в соответствии с правилом
экологической пирамиды потеря энергии от звена к звену составляет около
90%.
Билет № 9
1. 1. Пластический обмен — совокупность реакций синтеза органических
веществ в клетке с использованием энергии. Синтез белков из аминокислот,
жиров из глицерина и жирных кислот — примеры биосинтеза в клетке.
2. Значение пластического обмена: обеспечение клетки строительным
материалом для создания клеточных структур; органическими веществами,
которые используются в энергетическом обмене.
3. Фотосинтез и биосинтез белков — примеры пластического обмена. Роль
ядра, рибосом, эндоплазматической сети в биосинтезе белка. Ферментативный
характер реакций биосинтеза, участие в нем разнообразных ферментов.
Молекулы АТФ — источник энергии для биосинтеза.
4. Матричный характер реакций синтеза белков и нуклеиновых кислот в
клетке. Последовательность нуклеотидов в молекуле ДНК — матричная основа
для расположения нуклеотидов в молекуле иРНК, а последовательность
нуклеотидов в молекуле иРНК — матричная основа для расположения аминокислот
в молекуле белка в определенном порядке.
5. Этапы биосинтеза белка:
1) транскрипция — переписывание в ядре информации о структуре белка с ДНК
на иРНК. Значение дополнительности азотистых оснований в этом процессе.
Молекула иРНК — копия одного гена, содержащего информацию о структуре
одного белка. Генетический код — последовательность нуклеотидов в молекуле
ДНК, которая определяет последовательность аминокислот в молекуле белка.
Кодирование аминокислот триплетами — тремя рядом расположенными
нуклеотидами;
2) перемещение иРНК из ядра к рибосоме, нанизывание рибосом на иРНК.
Расположение в месте контакта иРНК и рибосомы двух триплетов, к одному из
которых подходит тРНК с аминокислотой. Дополнительность нуклеотидов иРНК и
тРНК — основа взаимодействия аминокислот. Передвижение рибосомы на новый
участок иРНК, содержащий два триплета, и повторение всех процессов:
доставка новых аминокислот, их соединение с фрагментом молекулы белка.
Движение рибосомы до конца иРНК и завершение синтеза всей молекулы белка.
6. Высокая скорость реакций биосинтеза белка в клетке. Согласованность
процессов в ядре, цитоплазме, рибосомах — доказательство целостности
клетки. Сходство процесса биосинтеза белка в клетках растений, животных и
др. — доказательство их родства, единства органического мира.
2. 1. Наследственная изменчивость — свойство организмов приобретать
новые признаки в процессе онтогенеза и передавать их потомству. Виды
наследственной изменчивости — мутационная и комби-нативная. Материальные
основы наследственной изменчивости — изменение генов, генотипа; ее
индивидуальный характер (проявление у отдельных особей), необратимость,
передача по наследству.
2. Комбинативная изменчивость — результат перекомбинации генов при
скрещивании организмов. Причины перекомбинации генов — перекрест и обмен
участками гомологичных хромосом, случайный характер распределения хромосом
между дочерними клетками в ходе мейоза, случайное сочетание гамет при
оплодотворении, взаимодействие генов. Пример: появление дрозофил с темным
телом и длинными крыльями при скрещивании серых дрозофил с длинными
крыльями с темными дрозофилами с короткими крыльями.
3. Мутационная изменчивость — внезапное, случайное возникновение стойких
изменений генетического аппарата, вызывающее появление новых признаков в
фенотипе. Примеры: шестипалая рука, альбиносы. Виды мутаций — генные
(изменение последовательности нуклеотидов в гене) и хромосомные (увеличение
или уменьшение числа хромосом, потеря их части). Последствия генных и
хромосомных мутаций — синтез новых белков, а значит, и появление новых
признаков у организмов, которые чаще всего ведут к снижению
жизнеспособности, а иногда и к смерти.
4. Полиплоидия — наследственная изменчивость, вызванная кратным
увеличением числа хромосом. При этом увеличиваются размеры, масса, число
семян и плодов у растения. Причины — нарушение процессов митоза или мейоза,
нерасхождение хромосом в дочерние клетки. Широкое распространение в природе
полиплоидии у растений. Получение полиплоидных сортов растений, их высокая
урожайность.
5. Соматические мутации — изменение генов или хромосом в соматических
клетках, возникновение изменений в той части организма, которая 6.
Митохондрии — органоиды, отграниченные от цитоплазмы двумя мембранами. В
них с участием ферментов окисляются органические вещества и синтезируются
молекулы АТФ. Увеличение поверхности внутренней мембраны, на которой
расположены ферменты, за счет крист. АТФ — богатое энергией органическое
вещество.
7. Пластиды (хлоропласты, лейкопласты, хромопласты), их содержание в
клетке — главная особенность растительного организма. Хлоропласты —
пластиды, содержащие зеленый пигмент хлорофилл, который поглощает энергию
света и использует ее на синтез органических веществ из углекислого газа и
воды. Отграничение хлоропластов от цитоплазмы двумя мембранами,
многочисленные выросты — граны на внутренней мембране, в которых
расположены молекулы хлорофилла и ферменты.
8. Комплекс Гольджи — система полостей, отграниченных от цитоплазмы
мембраной. Накапливание в них белков, жиров и углеводов. Осуществление на
мембранах синтеза жиров и углеводов.
9. Лизосомы — тельца, отграниченные от цитоплазмы одной мембраной.
Содержащиеся в них ферменты ускоряют реакцию расщепления сложных молекул до
простых: белков до аминокислот, сложных углеводов до простых, липидов до
глицерина и жирных кислот, а также разрушают отмершие части клетки, целые
клетки.
10. Вакуоли — полости в цитоплазме, заполненные клеточным соком, место
накопления запасных питательных веществ, вредных веществ; они регулируют
содержание воды в клетке.
11. Клеточные включения — капли и зерна запасных питательных веществ
(белки, жиры и углеводы).
12. Ядро — главная часть клетки, покрытая снаружи двухмембранной,
пронизанной порами ядерной оболочкой. Вещества поступают в ядро и удаляются
из него через поры. Хромосомы — носители наследственной информации о
признаках организма, основные структуры ядра, каждая из которых состоит из
одной молекулы ДНК в соединении с белками. Ядро — место синтеза ДНК, иРНК,
рРНК.
2. Ароморфоз — крупное эволюционное изменение. Оно обеспечивает
повышение уровня организации оргзлизмов, преимущества в борьбе за
существование, возможность освоения новых сред обитания.
2. Факторы, вызывающие ароморфозы, — наследственная изменчивость, борьба
за существование и естественный отбор.
3. Основные ароморфозы в эволюции многоклеточных животных:
1) появление многоклеточных животных от одноклеточных, дифференциация
клеток и образование тканей;
2) формирование у животных двусторонней симметрии, передней и задней
частей тела, брюшной и спинной сторон тела в связи с разделением функций в
организме (ориентация в пространстве — передняя часть, защитная — спинная
сторона, передвижение — брюшная сторона);
3) возникновение бесчерепных, подобных современному ланцетнику, панцирных
рыб с костными челюстями, позволяющими активно охотиться и справляться с
добычей;
4) возникновение легких и появление легочного дыхания наряду с жаберным;
5) формирование скелета плавников с мышцами, подобных пятипалой конечности
наземных позвоночных, позволивших животным не только плавать, но и ползать
по дну, передвигаться по суше;
6) усложнение кровеносной системы от двухкамерного сердца, одного круга
кровообращения у рыб до четырехкамерного сердца, двух кругов кровообращения
у птиц и млекопитающих. Развитие нервной системы: паутинообразная у
кишечнопо-лостных, брюшная цепочка у кольчатых червей, трубчатая нервная
система, значительное развитие развилась из мутировавших клеток.
Соматические мутации потомству не передаются, они исчезают с гибелью
организма. Пример — белая прядь волос у человека.
3. Растения поглощают углекислый газ из окружающей среды и
используют его углерод в процессе фотосинтеза на создание органических
веществ. Их используют как сами растения, так и животные (рыбы, моллюски).
Они питаются ими, создают из них вещества, свойственные организму.
Органические вещества организмы используют в процессе дыхания, при этом в
окружающую среду выделяется углекислый газ. Расщепление мертвых остатков
микроорганизмами сопровождается выделением в атмосферу углекислого газа.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16