Реферат: Расчет редуктора приборного типа
подшипник №4(1000094): B = 4.0 (мм);
Принимаем толщину пластин редуктора равной В¢ = 4.5 (мм).
3. Проверочный силовой расчёт выходной зубчатой передачи.
Сделаем проверочный силовой расчёт на выносливость выходной зубчатой передачи по изгибной усталости.
Условие прочности:
, (3.1)
где - напряжение при изгибе;
[] - предельно
допустимое напряжение при изгибе, определяемое по формуле:
для колеса: (3.2.1),
для
шестерни: (3.2.2);
где sT- предел текучести материала (в Н/мм2);
sB - предел прочности материала (в Н/мм2);
s-1 – предел выносливости материала, определяемый по формуле:
, (3.2.3)
Sn - запас прочности;
kFC = 0.8 - коэффициент, учитывающий влияние реверсивности передачи;
m - модуль зубчатого колеса;
YF - коэффициент, учитывающий влияние формы зуба;
WFt
-удельная,
нагрузка по ширине зуба, определяемая по формуле:
(3.3)
где T – крутящий момент, действующий на зубчатое колесо;
kF - коэффициент, учитывающий влияние неравномерности распределения нагрузки;
, (3.4)
где - коэффициент, учитывающий
влияние неравномерности распределения нагрузки между зубьями;
-
коэффициент, учитывающий влияние неравномерности распределения нагрузки
по ширине зуба;
-
коэффициент, учитывающий влияние динамической нагрузки;
bw - рабочая ширина венца зубчатой передачи;
dw=d - диаметр делительной окружности зубчатого колеса.
1). Проведём расчёт на выносливость колеса.
Материал колеса: Бр. ОЦ 4-3т
Мпа;
Мпа;
По формуле (3.2.1) определяем :
По [3]: =1;
=1.02;
По формуле (3.4) определяем :
=1×1.02×1.089=1.11
По формуле (3.3) определяем :
;
По [3]: для
z = 117;
По формуле (3.1) определяем :
133.56 < 139.2 т.е. <
;
Условие прочности выполняется.
2). Проведём расчёт на выносливость шестерни.
Материал шестерни: Сталь 40ХН, обработка - улучшение
МПа;
Sn = 1.1
По формуле (3.2.3) определяем:
По формуле (3.2.2) определяем:
По [3]: =1;
=1.02;
По формуле (3.4) определяем :
=1×1.02×1.508=1.538;
По формуле (3.3) определяем :
;
По [3]: для
z = 20;
По формуле (3.1) определяем :
258.77
< 381.8 т.е. <
;
Условие прочности выполняется.
4. Расчёт предохранительной фрикционной муфты.
Проведём расчёт числа дисков предохранительной фрикционной муфты, исходя из следующих условий:
1. Наружный диаметр трущихся поверхностей D2=8, (определён в процессе конструирования);
2. Внутренний диаметр трущихся поверхностей D1=3, (определён в процессе конструирования);
3. Материал дисков – закалённая сталь по бронзе без смазки;
4. Допустимое удельное давление на рабочих поверхностях (см.[1]): [p] = 1.2Мпа, коэффициент трения скольжения f = 0.2;
5. Момент ТV = 372;
Расчёт муфты производиться по формуле:
, (4.1)
где Ттр – момент трения, развиваемый на парах рабочих поверхностей z;
Q – сила прижатия;
Rcp – средний радиус трения, определяемый по формуле:
, (4.2)
z – число трущихся поверхностей;
b - коэффициент запаса сцепления,
(принимаем b = 1.25);
kD – коэффициент динамической нагрузки,
(принимаем kD = 1.2);
Исходя из формул (4.1) и (4.2), z определяется как:
, (4.3)
Удельное
давление: ,
(4.4)
где S – площадь поверхности трения, определяемая по формуле:
, (4.5)
Из формул (4.4) и (4.5) определяем силу прижатия:
, (4.6)
Исходя из формул (4.3) и (4.6) имеем формулу для расчёта числа трущихся поверхностей z:
Число фрикционных дисков n определяется по формуле:
5. Расчёт выходного вала на выносливость.
5.1. Расчёт действующих в зацеплении сил.
Действующие в зацеплении силы рассчитываются по следующим формулам:
, (5.1)
где - крутящий момент,
действующий на зубчатое колесо;
- окружная составляющая силы
зацепления, действующей на колесо.
, (5.2)
где - окружная составляющая силы
зацепления, действующей на шестерню.
, (5.3)
где - радиальная составляющая
силы зацепления, действующей на колесо;
- угол зацепления.
, (5.4)
где - радиальная составляющая
силы зацепления, действующей на шестерню.
По
формуле (5.1) определяем :
;
По
формуле (5.2) определяем :
;
По
формуле (5.3) определяем :
;
По
формуле (5.4) определяем :