RSS    

   Учебное пособие: Матричная математическая система MATLAB

Если Шаг не задан, то он принимает значение 1. Если конечное значение указано меньшим, чем начальное значение, – выдается сообщение об ошибке. Примеры применения оператора : даны ниже:

>> 1:5

ans =                    1       2       3       4       5

>> i=0:2:10

i =               0       2       4       6       8       10

>> j=10:-2:2

j =               10     8       6       4       2

>> V=0:pi/2:2*pi;

>> V

V =             0       1.570 3.141 4.712 6.2832

>> X=1:-.2:0

X =             1.000 0.800 0.600 0.400 0.200 0

>> 5:2

ans =

Empty matrix: 1-by-0

Как отмечалось, принадлежность MATLAB к матричным системам вносит коррективы в назначение операторов и приводит, при неумелом их использовании, к казусам. Рассмотрим следующий характерный пример:

>> x=0:5

x =              0       1       2       3       4       5

>> cos(x)

ans =                    1.000 0.54 -0.416 -0.99 -0.653 0.2837

>> sin(x)/x

ans = -0.0862

Вычисление массива косинусов здесь прошло корректно. А вот вычисление массива значений функции sin(x)/x дает неожиданный, на первый взгляд, эффект – вместо массива с шестью элементами вычислено единственное значение!

Причина «парадокса» здесь в том, что оператор / вычисляет отношение двух матриц, векторов или массивов. Если они одной размерности, то результат будет одним числом, что в данном случае и выдала система. Чтобы действительно получить вектор значений sin(x)/x, надо использовать специальный оператор поэлементного деления массивов – ./. Тогда будет получен массив чисел:


>> sin(x)./x

Warning: Divide by zero.

ans = NaN           0.841 0.454 0.047 -0.1892 -0.1918

Впрочем, и тут без особенностей не обошлось. Так, при x = 0 значение sin(x)/x дает устранимую неопределенность вида 0/0 – 1. Однако, как и всякая численная система, MATLAB классифицирует попытку деления на 0 как ошибку и выводит соответствующее предупреждение. А вместо ожидаемого численного значения выводится символьная константа NaN, означающая, что неопределенность 0/0 – это все же не обычное число.

Выражения с оператором : могут использоваться в качестве аргументов функций для получения множественных их значений. Например, в приводимом ниже примере вычислены функции Бесселя порядка от 0 до 5 со значением аргумента 0,5:

>> bessel(0:1:5,1/2)

ans =                             0.938 0.242 0.030 0.002 0.0002 0.0000

А в следующем примере вычислено шесть значений функции Бесселя нулевого порядка для значений аргумента от 0 до 5 с шагом 1:

>> bessel(0,0:1:5)

ans =                             1.0000 0.7652 0.2239 -0.2601 -0.3971 -0.1776

Таким образом, оператор : является весьма удобным средством задания регулярной последовательности чисел. Он широко используется при работе со средствами построения графиков. В дальнейшем мы расширим представление о возможностях этого оператора.


Функции пользователя

matlab график матрица функция

Хотя ядро новых версий системы MATLAB содержит уже более 1000 встроенных функций (не считая функций, определенных в десятках пакетов расширения), всегда может понадобиться какая-то нужная пользователю функция. Язык программирования системы MATLAB предоставляет ряд возможностей для задания функций пользователя. Одна из таких возможностей заключается в применении функции inline, аргументом которой надо в апострофах задать выражение, задающее функцию одной или нескольких переменных. В приведенном ниже примере задана функция двух переменных – суммы квадратов sin(x) и cos(y):

>> sc2=inline('sin(x).^2+cos(y)^.2')

sc2 =

Inline function:

sc2(x,y) = sin(x).^2+cos(y).^2

Можно также задавать свои функции в виде m-файлов. Например, можно в окне редактора m-файлов (открывается командой New в меню File) создать m-файл с именем sc2 и листингом:

function y=sc2(x,y)

y=sin(x).^2+cos(y).^2

Записав его на диск, можно командой type sc2 вывести листинг созданной функции:

>> type sc2

function y=sc2(x,y)

y=sin(x).^2+cos(y).^2


Обращение к функции, созданной описанными методами, задается как

sc2(x,y), где на место x и y подставляются значения переменных – аргументов функции пользователя. Например:

>> sc2(1,2)

ans = 0.8813

>> sc2(2,1)

y = 1.1187

ans = 1.1187

Можно также создать так называемую handle-функцию (именуемую также анонимной функцией) с помощью оператора @:

>> fh=@sc2;

К такой функции можно обращаться с помощью функции исполнения функций feval(fh,x,y):

>> feval(fh,1,2)

y = 0.8813

ans = 0.8813

>> feval(fh,2,1)

y = 1.1187

ans = 1.1187

Сообщения об ошибках и исправление ошибок

Большое значение при диалоге с системой MATLAB и отладке программ в ней имеет диагностика ошибок. Рассмотрим ряд примеров, поясняющих технику диагностики. Введем, к примеру, ошибочное выражение

>> sqr(2)

и нажмем клавишу ENTER. Система сообщит об ошибке:

??? Undefined function or variable 'sqr'.

Это сообщение говорит о том, что не определена переменная или функция, и указывает, какая именно, – sqr. В данном случае, разумеется, можно просто набрать правильное выражение. Однако в случае громоздкого выражения лучше воспользоваться редактором. Для этого достаточно нажать клавишу ↓ для перелистывания предыдущих строк. В результате в строке ввода появится выражение

>> sqr(2)

с курсором в его конце. В MATLAB можно теперь нажать клавишу Tab. Система введет подсказку, анализируя уже введенные символы. Из предложенных системой трех операторов выбираем sqrt. Теперь c помощью клавиши ↓ вновь выбираем нужную строку и, пользуясь клавишей ←, устанавливаем курсор после буквы r. Теперь нажмем клавишу T, а затем клавишу ENTER. Выражение примет следующий вид:

>> sqrt(2)

ans = 1.4142

Если бы был только один вариант окончания введенных символов, то после нажатия клавиши Tab система бы закончила наш ввод без перевода строки.

Вычисления дают ожидаемый результат – значение квадратного корня из двух.

В системе MATLAB внешние определения используются точно так же, как и встроенные функции и операторы. Никаких дополнительных указаний на их применение делать не надо. Достаточно лишь позаботиться о том, чтобы используемые определения действительно существовали в виде файлов с расширением .m.

Впрочем, если вы забудете об этом или введете имя несуществующего определения, то система отреагирует на это звуковым сигналом (звонком) и выводом сообщения об ошибке:

>> hsin(1)

??? Undefined function or variable 'hsin'.

>> sinh(1)

ans = 1.1752

В этом примере мы забыли (нарочно), какое имя имеет внешняя функция, вычисляющая гиперболический синус. Система подсказала, что функция или переменная с именем hsin не определена – ни как внутренняя, ни как m-функция.

Зато далее мы видим, что функция с именем sinh есть в составе функций системы MATLAB – она задана в виде M_функции, хранящейся на жестком диске. Между тем в последнем примере мы не давали системе никаких указаний на то, что следует искать именно внешнюю функцию! И это вычисление прошло так же просто, как вычисление встроенной функции, такой как sin.

Иногда в ходе вывода результатов вычислений появляется сокращение NaN (от слов Not a Number – не число). Оно обозначает неопределенность, например вида 0/0 или Inf/Inf, где Inf – системная переменная со значением машинной бесконечности. Могут появляться и различные предупреждения об ошибках (на английском языке). Например, при делении на 0 конечного числа появляется предупреждение «Warning: Devide by Zero.» («Внимание: деление на нуль»). Диапазон чисел, представимых в системе, лежит от 10–308 до 10+308.

Вообще говоря, в MATLAB надо отличать предупреждение об ошибке от сообщения о ней. Предупреждения (обычно после слова Warning) не останавливают вычисления и лишь предупреждают пользователя о том, что диагностируемая ошибка способна повлиять на ход вычислений. Сообщение об ошибке (после знаков ???) останавливает вычисления. Система контроля за ошибочными ситуациями в MATLAB 2009 была существенно переработана и стала более корректной.


Формирование векторов и матриц

Задания векторов и матриц и доступ к их элементам

MATLAB – система, специально предназначенная для проведения сложных вычислений с векторами, матрицами и массивами. При этом она по умолчанию предполагает, что каждая заданная переменная – это вектор, матрица или массив. Все определяется конкретным значением переменной. Например, если задано X=1, то это значит, что X – это вектор с единственным элементом, имеющим значение 1, а точнее даже матрица с размером 1×1. Если надо задать вектор из трех элементов, то их значения следует перечислить в квадратных скобках, разделяя пробелами или запятыми. Так, например, присваивание

>> V=[1 2 3]

V =    1 2 3

задает вектор V, имеющий три элемента со значениями 1, 2 и 3 (его можно считать и матрицей размера 3×1). После ввода вектора система выводит его на экран дисплея. Заметим, для вектора столбца нужно разделять элементы знаками «;» (точка с запятой):

>> V=[1; 2; 3]

V =

1

2

3

Задание матрицы требует указания нескольких строк и нескольких столбцов.

Для разграничения строк используется знак ; (точка с запятой). Этот же знак в конце ввода предотвращает вывод матрицы или вектора (и вообще любой операции) на экран дисплея. Так, ввод

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.