RSS    

   Реферат: Построение экономической модели c использованием симплекс-метода

      Обычно находят решение задачи ЛП , в котором фигурируют переменные Yi’ и Yi’’ , а затем с помощью обратной подстановки определяют величину Yi . Важная особенность переменных Yi’ и Yi’’ состоит в том , что при любом допустимом решении только одна из этих переменных может принимать положительное значение , т.е. если Yi’>0 , то Yi’’=0, и наоборот . Это позволяет рассматривать Yi’ как остаточную переменную , а Yi’’ - как избыточную переменную , причем лишь одна из этих переменных может принимать положительное значение . Указанная закономерность широко используется в целевом программировании и фактически является предпосылкой для использования соответсвующих преобразований в задаче 2.30


Целевая функция

      Целевая функция линейной оптимизационной модели , представлена в стандартной форме , может подлежать как максимизации , так и минимизации . В некоторых случаях оказывается полезным изменить исходную целевую функцию .

      Максимизация некоторой функции эквивалентна минимизации той же функции , взятой с противоположным знаком , и наоборот . Например максимизация функции

Z = X1 + 25X2

эквивалентна минимизации функции

( -Z ) = -X1 - 25X2

Эквивалентность означает , что при одной и той же совокупности ограничений оптимальные значения X1 , X2 , в обоих случаях будут одинаковы . Отличие заключается только в том , что при одинаковых числовых значениях целевых функций их знаки будут противоположны .


Симплекс-метод .

              В вычислительной схеме симплекс-метода реализуется упорядоченный процесс , при котором , начиная с некоторой  исходной допустимой угловой точки ( обычно начало координат ) , осуществляются последовательные переходы от одной допустимой экстремальной точки к другой до тех пор , пока не будет найдена точка , соответствующая оптимальному решению .

               Общую идею симплекс-метода можно проиллюстрировать на примере модели , посроенной для нашей задачи . Пространство решений  этой задачи представим на рис. 1 . Исходной точкой алгоритма является начало координат ( точка А на рис. 1 ) . Решение , соответствующее этой точке , обычно называют начальным решением . От исходной точки осуществляется переход к некоторой смежной угловой точке .

     Выбор каждой последующей экстремальной точки при использовании симплекс-метода определяется следующими двумя правилами .

1.   Каждая последующая угловая точка должна быть смежной с предыдущей . Этот переход осуществляется по границам ( ребрам ) пространства решений .

2.   Обратный переход к предшествующей экстремальной точке не может производиться .

Таким образом , отыскание  оптимального решения начинается с некоторой допустимой угловой точки , и все переходы осуществляются только к смежным точкам , причем перед новым переходом каждая из полученных точек проверяется на оптимальность .

Определим пространство решений и угловые точки агебраически . Требуемые соотнощшения устанавливаются из указанного в таблице соответствия геометрических и алгебраических определений

.

Геометрическое определение Алгебраическое определение              ( симплекс метод )
Пространство решений Ограничения модели стандартной формы
Угловые точки Базисное решение задачи в стандартной форме

 

Представление пространства решений стандартной задачи линейного программирования .

Линейная модель , построенная для нашей задачи и приведенная к стандартной форме , имеет следующий вид :

Максимизировать

                              Z = X1  +  25X2 +  0S1 + 0S2

При ограничениях

            5X1 + 100X2 +    S1              = 1000

      - X1   +     2X2                   + S2 = 0

X1=>0 , X2=>0 , S1=>0 , S2=>0

Каждую точку пространства решений данной задачи , представленную на рис.1 , можно определить с помощью переменных X1 , X2 , S1 и S2 , фигурирующими в модели стандартной формы. При S1 = 0 и S2 = 0 ограничения модели эквивалентны равенствам , которые представляются соответствующими ребрами пространства решений . Увеличение переменных S1 и S2 будет соответствовать смещению допустимых точек с границ пространства решений в его внутреннюю область. Переменные X1 , X2 , S1 и S2 , ассоциированные с экстремальными точками А , В ,  и С можно упорядочить , исходя из того , какое значение ( нулевое или ненулевое ) имеет данная переменная в экстремальной точке .

Экстремальная точка Нулевые переменные Ненулевые переменные
А S2 , X2 S1 , X1
В S1 , X2 S2 , X1
С S1 , S2 X1 , X2

 Анализируя таблицу , легко заметить две закономерности:

1. Стандартная модель содержит два уравнения и четыре
неизвестных , поэтому в каждой из экстремальных точек две ( = 4 - 2 ) переменные должны иметь нулевые значения .

2. Смежные экстремальные точки отличаются только одной пе-
ременной в каждой группе ( нулевых и ненулевых переменных ) ,

Первая закономерность свидетельствует о возможности опре-
деления экстремальных точек алгебраическим способом путем при-
равнивания нулю такого количества переменных , которое равно
разности между количеством неизвестных и числом уравнений .
В этом состоит сущность свойства однозначности экстремальных
точе на рис 1 каждой неэкстремальной точке соответствует
не более одной нулевой переменной . Так , любая точка внутренней
области пространства решений вообще не имеет ни одной нулевой
переменной, а любая неэкстремальная точка , лежащая на границе ,
всегда имеет лишь одну нулевую переменную .

Свойство однозначности экстремальных точек позволяет опре-
делить их алгебраическим методом. Будем считать , что линейная
модель стандартной формы содержит т уравнений и п ( т <= п ) не-
известных ( правые части ограничений — неотрицательные ) . Тогда
все допустимые экстремальные точки определяются как все одно-
значные неотрицательные решения системы m уравнений , в ко-
торых п m  переменных равны нулю.

Однозначные решения такой системы уравнений, получаемые
путем приравнивания к нулю ( п — т ) переменных , называются
базисными решениями . Если базисное решение удовлетворяет
требованию неотрицательности правых частей , оно называется
допустимым базисным решением. Переменные , имеющие нулевое
значение , называются небазисными переменными , остальные —
базисными переменными.

Из вышеизложенного следует , что при реализации симплекс-
метода алгебраическое определение базисных решений соответст-
вует идентификации экстремальных точек , осуществляемой при
геометрическом представлении пространства решений . Таким об-
разом , максимальное число итераций при использовании симплекс-
метода равно максимальному числу базисных решений задачи ЛП ,
представленной в стандартной форме . Это означает , что количество
итерационных процедур симплекс-метода не превышает

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.