RSS    

   Реферат: Локальная сеть Ethernet в жилом микрорайоне

- устранение опасности поражения при появлении на­пряжения на корпусах, кожухах и других частях элек­трооборудования, что достигается защитным заземле­нием, занулением, защитным отключением;

- применение малых напряжений;

- защита от случайного прикосновения к токоведущим частям применением кожухов, ограждений, двойной изо­ляции;

- защита от опасности при переходе напряжения с выс­шей стороны на низшую;

- контроль и профилактика повреждений изоляции;

- компенсация емкостной составляющей тока замыка­ния на землю;

- применение специальных электрозащитных средств —­ переносных приборов и предохранительных приспособ­лений;

- организация безопасной эксплуатации электроуста­новок .

Применение малых напряжений. Если номинальное напряжение электроустановки не превышает длительно допустимого напряжения прикосновения, снижается опасность поражения электрическим током. Наиболь­шая степень безопасности достигается при малых напря­жениях 6—12 В при питании потребителей от аккуму­ляторов, гальванических элементов, выпрямительных установок, преобразователей частоты, понизительных трансформаторов на напряжение 12, 24, 36, 42 В. При­менение малых напряжений ограничивается трудностью осуществления протяженной сети. Поэтому областью применения малых напряжений являются ручной элек­трифицированный инструмент, переносные лампы, лампа местного освещения, сигнализация.

Электрическое разделение сети. Разветвленная сеть большой протяженности имеет значительную емкость и малое активное сопротивление изоляции относительно земли. Ток замыкания на землю в такой сети может быть значительным. Если единую сильно разветвленную сеть с большой емкостью и малым сопротивлением изоляции разделить на ряд небольших сетей такого же напряже­ния, которые будут обладать незначительной емкостью и высоким сопротивлением изоляции, опасность пора­жения резко снизится. Обычно электрическое разделение сетей осуществляется путем подключения отдельных электроприемников через разделительный трансформа­тор, питающийся от основной разветвленной сети.

Защита от опасности при переходе напряжения с выс­шей стороны на низшую. При повреждении изоляции между обмотками высшего и низшего напряжений транс­форматора возникает опасность перехода напряжения и, как следствие, опасность поражения человека, возникно­вения загорании и пожаров. Способы защиты зависят от режима нейтрали. Сети напряжением до 1000 В с изо­лированной нейтралью, связанные через трансформа­тор с сетями напряжением выше 1000 В, должны быть за­щищены пробивным предохранителем, установленным в нейтрали или фазе на стороне низшего напряжения трансформатора. Тогда в случае повреждения изоляции между обмотками высшего и низшего напряжений этот предохранитель пробивается и нейтраль или фаза низ­шего напряжения заземляется. Мерой защиты является снижение этого напряжения до безопасного заземлением нейтрали с сопротивлением меньше чем 4 Ом. Пробивные предохранители применяются при высшем напряжении более 3000 В. Если высшее напряжение ни­же 1000 В, пробивной предохранитель не срабатывает. Поэтому вторичные обмотки понизительных трансфор­маторов для питания ручного электроинструмента и руч­ных ламп малым напряжением заземляют.

Контроль и профилактика повреждений изоляции. Профилактика изоляции направлена на обеспечение ее надежной работы. Прежде всего необходимо исклю­чить механические повреждения, увлажнение, химиче­ское воздействие, запыление, перегревы. Но даже в нор­мальных условиях изоляция постепенно теряет свои пер­воначальные свойства. С течением времени развиваются местные дефекты. Сопротивление изоляции на­чинает резко уменьшаться, а ток утечки — непропорцио­нально расти. В месте дефекта появляются частичные разряды тока, изоляция выгорает. Происходит так назы­ваемый пробой изоляции, в результате чего возникает ко­роткое замыкание, которое, в свою очередь, может при­вести к пожару или поражению людей током. Чтобы поддерживать диэлектрические свойства изо­ляции, необходимо систематически выполнять профилак­тические испытания, осмотры, удалять непригодную изоляцию и заменять ее. Периодически в помещениях без повышенной опасно­сти и в опасных помещениях соответственно не реже од­ного раза в два года и в полгода проверяют соответствие сопротивления изоляции норме. При обнаружении де­фектов изоляции, а также после монтажа сети или ее ремонта на отдельных участках отключенной сети между каждым проводом и землей или между проводами раз­ных фаз проводят измерения.

Однофазные замыкания тока, которые могут возник­нуть в электрических машинах, аппаратах, приборах опасны тем, что на корпусах и опорах появляют­ся напряжения, достаточные для поражения человека и возникновения пожара. Ток замыкания создает опас­ные напряжения не только на самом оборудовании, но и возле него, растекаясь с оснований и фундаментов.

Защиту от поражения электрическим током и воз­горании можно осуществить защитным отключением (отключают поврежденный участок сети быстродейству­ющей защитой), либо защитным заземлением (снижают напряжения прикосновения и шага), либо занулением (отключают оборудование и снижают напряжения прикосновения и шага на период, пока не сработает отключающий аппарат). Рассмотрим эти важнейшие меры защиты в электро­установках.

Главное назначение защитного заземления — понизить потенциал на корпусе электро­оборудования до безопасной величины. Защитным заземлением называется преднамеренное электрическое соединение с землей металлических нетокопроводящих частей, которые могут оказаться под на­пряжением. Корпуса электрических машин, трансформаторов, светильников, аппаратов и другие металличе­ские нетоковедущие части могут оказаться под напряжением при замыкании их токоведущих частей на корпус. Если корпус при этом не имеет контакта с землей, при­косновение к нему так же опасно, как и прикосновение к фазе. Если же корпус заземлен, он окажется под на­пряжением. а человек, касающийся этого корпуса, попадает под напряжение прикосновения. Безопасность обеспе­чивается путем заземления корпуса заземлителем, име­ющим малое сопротивление заземления и малый коэф­фициент напряжения прикосновения. Сопротивление тела человека и заземлителя параллельно. Поэтому преобладающая часть тока замы­кания на землю пройдет через заземлитель и только незначительная часть — через тело человека. В этом суть применения защитного заземления. Защитное заземление может быть эффективно в том случае, если ток замыкания на землю не увеличивается с уменьшением сопротивления заземления. Это возмож­но в сетях с изолированной нейтралью, где при замыкании на землю или на заземленный корпус ток не зависит от проводимости (или сопротивления) заземления, а так­же в сетях напряжением выше 1000В с заземленной ней­тралью. В последнем случае замыкание на землю явля­ется коротким замыканием, причем срабатывает макси­мальная токовая защита. В сети с заземленной нейтра­лью напряжением до 1000 В заземление неэффективно, так как даже при глухом замыкании на землю ток зави­сит от сопротивления заземления и с уменьшением последнего ток возрастает.

Область применения защитного заземления: сети до 1000В переменного тока — трехфазные трехпроводные с изолированной нейтралью; однофазные двухпроводные, изолированные от земли, а также постоянно­го тока двухпроводные с изолированной средней точкой обмоток источника тока; сети выше 1000 В переменного и постоянного тока с любым режимом нейтральной или средней точек обмоток источников тока.

Защитному заземлению подлежит оборудование: в помещениях с повышенной опасностью и особо опас­ных, а также в наружных установках заземление явля­ется обязательным при номинальном напряжении элек­троустановки выше 42 В переменного тока и 110 В по­стоянного тока; в помещениях без повышенной опасности заземление является обязательным при напряжении 380 В и выше переменного тока и 440 В и выше постоянного тока; во взрывоопасных помещениях заземление выполня­ется независимо от значения напряжения.

Защитное отключение — быст­родействующая защита, обеспечивающая автоматическое отключение электроустановки при возникновении в ней опасности поражения человека током. Такая опасность может возникнуть при замыкании фазы на корпус, сни­жении сопротивления изоляции сети ниже определенного предела и, наконец, в случае прикосновения человека не­посредственно к токоведущей части, находящейся под напряжением.

Защитное отключение применяется в тех случаях, когда другие защитные мероприятия (заземление, зануление) ненадежны, трудно осуществимы, дороги или когда к безопасности обслуживания предъявляются повышенные требования (в шахтах, карьерах), а также при передвижных элект­роустановках. Область применения устройств защитного отключения практически не ограничена: они могут при­меняться в сетях любого напряжения и с любым режимом нейтрали. Однако наибольшее распространение устрой­ства защитного отключения получили в сетях до 1000 В (с заземленной и изолированной нейтралью). Защитное отключение является незаменимым для ручных электро­инструментов.

Во всех этих случаях опасность поражения обуслов­лена напряжением прикосновения или током, прохо­дящим через человека. Основными элементами устройств защитного отключения являются прибор защитного отключения и автомат. Прибор защитного отключения состоит из отдельных элементов, которые воспринимают входную величину, реагируют на ее изменения и при заданном ее значении дают сигнал на от­ключение выключателя. Этими элементами являются: датчик — входное устройство (как правило, реле соответствующего типа); усилитель, усиливающий сигнал датчика; цепи контроля; вспомогательные элементы (сиг­нальные лампы и измерительные приборы — омметры и другие).

Основные требования, которым должны удовлетво­рить устройства защитного отключения, такие: высокая чувствительность; малое время отключения; селектив­ность действия; способность осуществлять самоконтроль исправности; достаточная надежность.

В зависимости от принятых входных (контролируемых) величин устройства защитного отключения условно делятся на следующие типы: реагирующие на потенциал (напряжение) корпуса относительно земли, ток замыка­ния на землю, напряжение нулевой последовательности, ток нулевой последовательности, напряжение фазы относительно земли, оперативный ток, вентильные схемы.


Заключение

С активным развитием домашних компьютерных сетей в настоящее время становится важным вопрос об их квалифицированной разработке.  Ведь от грамотного создания проекта сети зависит эффективность её дальнейшего функционирования. В результате проделанной работы была сначала спроектирована и создана компьютерная сеть в жилом микрорайоне по улицам Масленникова и 20 Лет РККА города Омска, объединяющая в себе четыре дома. После практической реализации сети в результате полученного опыта, и за счёт появления источника финансирования, было решено модернизировать и расширить сеть. В дипломном проекте описана разработка как простейший изначальной версии сети, не требующей больших финансовых вложений, так модифицированной. В итоге был создана современная компьютерная сеть, которая на данный момент является одной из крупнейших домашних сетей города Омска. В дипломном проекте найдены оптимальные решения для создания домашних сетей подключенных к сети Интернет по выделенному скоростному каналу, которые могут быть использованы в будущем при построении аналогичных сетей.

Модернизация сети позволила обеспечить высокий уровень стабильности работы всех участков сети. В итоге конечные пользователи получили доступ к сети Интернет с качеством связи и скоростью соединения превосходящей подключение через аналоговые модемы. Кроме того, сеть позволяет пользователям обмениваться программами, аудио и видео записями и играть в сетевые игры. В проекте также описана настройка сервера под операционную систему Linux.  


Библиографический список

1 Горальски В. Технологии ADSL и DSL.  М.: Лори, 2000, 296 с.

2 Барановская Т. П., Лойко В. И. Архитектура компьютерных систем и сетей. М.: Финансы и статистика, 2003, 256 с.

3 Манн С., Крелл М. Linux. Администрирование сетей TCP/IP. М.: Бином-Пресс, 2003, 656с.

4 Смит Р. Сетевые средства Linux. М.: Вильямс, 2003, 672 с.

5 Кульгин М. Компьютерные сети. Практика построения. СПб.: Питер, 2003, 464 с.

6 Таненбаум Э. Компьютерные сети. СПб.: Питер, 2003, 992 с.

7 Олифер В. Г., Олифер Н. А. Основы Сетей передачи данных. Курс лекций. М.: Интернет-Университет Информационных Технологий, 2003, 248 с.

8 Вишневский В. М. Теоретические основы проектирования компьютерных сетей. М.: Техносфера, 2003, 512 с.

9 Гринфилд Д. Оптические сети,  М.: ДС, 2002, 256 с.

10 Хольц Х., Шмит Б. Linux для Интернета и интранета. М.: Новое знание, 2002, 464 с.

11 Убайдуллаев Р. Р. Волоконно-оптические сети. М.: Эко-Трендз, 2001, 268 с.

12 Ибе О. Сети и удаленный доступ. Протоколы, проблемы, решения. М.: ДМК Пресс, 2002, 336 с.

13 Андерсон К. Минаси М. Локальные сети. М: Корона, 1999, 624 с.


Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.