Реферат: Исследование операций
Правила ветвления:
1) Выбирается переменная, у которой дробная часть наиболее близка к 0,5.
2) Выбирается переменная с наибольшим приоритетом по какому — либо качественному или количественному значению.
3) Переменная выбирается произвольно.
Ограничения введенные при ветвлении добавляются к ограничениям задачи ЛП.
В каждой из вершин находим оптимальные решения полученных путем добавления новых ограничений задач ЛП – 2 и ЛП – 3. Если не у одной из них мы не получили целочисленных оптимальных решений, то мы выбираем ту вершину, в которой получено наибольшее значение целевой функции и производим дальнейшее ветвление. Так продолжается до получения целочисленного оптимального решения одной из задач ЛП.
Вершина называется прозондированной, если:
1) Мы нашли в ней оптимальное целочисленное решение – решение задачи ЦЛП.
2) В данной вершине нет оптимальных решений задачи ЛП.
3) Значение Z в оптимальном решении задачи ЛП не больше текущей нижней границы.
Прочие вершины называются висящими.
Решение задачи методом целочисленного линейного программирования.
Метод ветвей и границ.
Начальные условия берутся из решения задачи ЛП (решение см. выше).
1. Вершина 1 x1 = 6,17 x2 = 0,9 x3 = 4,9 Z1 = 6048,24
Начнем ветвление по x1 = 6,17, тогда получаем дополнительные ограничения а) x1 6 (1 ветвь) б) x2 7 (2 ветвь).
Решаем сначала ветвь 1. К ограничениям задачи ЛП добавляем ограничение а.
Получаем седьмым ограничением ограничение x1 6;
Решение:
2. Вершина 2 x1 = 6 x2 = 1,2 x3 = 4,8 Z2 = 6033,7212
Мы получили одно целочисленное решение x1 = 6, следовательно дальнейшее ветвление мы будем проводить по x2 или x3.
Решаем ветвь 2. К ограничениям задачи ЛП добавляем ограничение б.
Седьмым ограничением становится ограничение x1 7.
Решение:
Второй строкой является ограничение задачи ЛП по максимально возможному объему руды с 2 предприятия:
120x1 740 или x16,16666, что противоречит введенному нами условию 6 (б) x1 7. Дальнейшее ветвление из вершины 3 невозможно.
Продолжим ветвление из вершины 2. Как было уже сказано выше, мы можем продолжить ветвление по x2 или x3. Продолжим ветвление по x2. x2 = 1,2, следовательно восьмое ограничение для 1 ветви будет x2 1, а для другой x2. Движемся сначала по ветви 1 в вершину 4.
Решение:
X1 = 6 x2
= 1 x3 = 5 Z4 = 5993,3501
Мы получили, что все три переменных имеют целочисленное значение,
но, чтобы данное решение являлось решением задачи ЦЛП необходимо и достаточно показать, что при ветвлении по ветви 2 в вершине 5 мы получим значение целевой функции Z5 < Z4. Найдем решение в вершине 5.
Решение:
Z5 = 5991,0396, следовательно Z5 < Z4, значит в вершине 4 мы получили решение задачи ЦЛП.
Интерпретация решения с помощью блок – схемы:
x1=6,1
Z1=6048 x2=0,9
x3=4,9
x16 x17
x1=6
x2=1,2 Система
x3=4,8 несовместна
x21 x22
x1=6 x1=5,6
x2=1 x2=2
x3=5 x3=4
Z=5993 Z=5991
Вершина | Ограничение | № ограничения |
2 |
x16 |
7 |
3 |
x17 |
7 |
4 |
x1 6 x21 |
7 8 |
5 |
x16 x22 |
7 8 |
Вывод:
В результате решения я получил, что целочисленное оптимальное решение получается в вершине 4, так как все значения x1=6, x2=1,x3=5 в этой вершине целочисленные и Z5(5991)<Z4(5993), следовательно получено оптимальное решение. Висящая вершина 5 и прозондированные 1,2,3,4.
Плановые задания:
, где P – плановое задание тыс. тонн, q – производительность состава, x – количество составов, i – номер предприятия.
Для предприятия 1:
тыс. тонн;
Для предприятия 2:
тыс. тонн;
Для предприятия 3:
тыс. тонн.
Нелинейное программирование.
Задача математического программирования называется нелинейной, если нелинейны ограничения или целевая функция.
Задачи нелинейного программирования бывают выпуклого и невыпуклого программирования, с ограничениями и без ограничений, с квадратичными или сепарабельными целевыми функциями. Задачи нелинейного программирования имеют множество экстремальных точек, и сложность решения заключается в выделении глобального оптимума, а не локального как это делается в большинстве классических методов.
Разделяют задачи безусловной и условной оптимизации. Задачами безусловной оптимизации называются задачи оптимизации функции многих переменных без дополнительных ограничений. Существуют следующие методы безусловной оптимизации: покоординатного спуска, градиентные, сопряженных направлений, метод Ньютона. Задачами условной оптимизации называются задачи о оптимизации целевой функции многих переменных f(x1, …, xn) при условии, что эти переменные удовлетворяют следующим ограничениям:
qi(x1, …, xn) = 0,