RSS    

   Реферат: Аппроксимация

   Кроме того первые k переменных двойственной задачи свободны, а остальные несвободны.

   Целевая функция двойственной задачи

W= a1, n+1 u1 + a2, n+1 u2 + … + am, n+1 um + am+1, n+1

   Совмещение в одной таблице прямой и двойственной задачи неслучайно. Решая прямую задачу, мы получаем о дновременно решение двойственной задачи, причем

max Z = min W = am+1, n+1

   Сделаем замену переменных в таблице 1 , перебросив вспомогательную переменную yr  на верх таблицы со знаком минус, а основную пременную xs на бок таблицы (ars¹0). Это означает движение из вершины x=(0, …, 0) в другую вершину многогранника W по его ребру. Элемент аrs называется разрешающим, строка r - разрешающей строкой, столбец s - разрешающим столбцом. Такая замена переменных носит название модифицированных жордановых исключений (МЖИ). Элементы матрицы а, не принадлежащие разрешающему столбцу или разрешающей строке, назовем рядовыми.

2.2 Описание исходных данных и результатов решения задачи линейного программирования.

   Обсудим исходные данные (текстовой файл simp.dat) и результаты решения задачи линейного программирования (текстовой файл simp.res). В начале файла simp.dat расположены, так называемые, представительские данные - строковые данные, каждое из которых распологается в файле с новой строки:

1. Строка с номером варианта,

2. Строка с русским названием модуля,

3. Строка с координатами студента (ФИО, факультет, курс, группа),

4. Строка с датой исполнения.

Далее следуют строки файла с числовыми исходными данными:

1. Управляющий вектор kl - отдельная строка состоящая из трёх чисел kl1 , kl2 , kl3:

kl1=0, если необходимо получить решение только прямой задачи.

kl1=1, если необходимо получить решение только двойственной задачи.

kl1=2, если необходимо получить решение обеих задач.

kl2=0, если нет свободных переменных, иначе kl2 равен числу этих нуль-уравнений.

2. Число ограничений и переменных (отдельная строка ввода).

3. Коэффициенты расширенной матрицы a, начиная с отдельной строки ввода.

4. Вектор номеров свободных переменных, если они есть, начиная с отдельной строки ввода.

   Результаты решения зависят от значения kl .

   Если kl1=0, то при благоприятном исходе это будет вектор оптимального решения прямой задачи и оптимальное значение целевой функции. При неблагоприятном исходе, это одно из сообщений: либо "Система ограничений несовместна", либо "Целевая функция неограничена".

   Если kl2=1, то же для двойственной задачи.

   Если kl2=2, то сначала выдается решение прямой, а потом двойственной задачи. При не благоприятном исходе сообщения справедливы только для прямой задачи (для двойственной аналогичные сообщения не выдаются). Результаты помещаются в файл simp.res.

3.2 Описание модуля типов.

   Для задания типов и файловых переменных вводного и выводного текстовых файлов используется модуль типов unit typesm, структура которого приведена ниже

unit typesm;

interface

const

          mmax=20; nmax=20; e=1e-5;

type

          klt =array[1..3] of integer;

          at =array[1..mmax+1,1..nmax+1] of real;

vec1it =array[1..nmax] of integer;

          vec2it =array[1..mmax] of integer;

          vec1rt =array[1..nmax] of real;

          vec2rt =array[1..mmax] of real;

var

          fi, fo:text;

implementation

end.

   В разделе констант заданы константы nmax и mmax, задающие максимальное число строк расширенной матрицы a без единицы, а также пороговая константа е, используемая в модуле поиска разрешающей строки. Константа е используется для обеспечения устойчивости алгоритма (модуль разрешающего элемента не должен быть слишком мал, а именно, больше е).

   Ниже приведена таблица фактических и формальных параметров подпрограмм задач линейного программирования. Обозначения формальных и фактических параметров совпадают.


N/N

Назначение

Обозначение

Тип

1. Управляющий вектор k1 ki1t
2. Число ограничений m integer
3. Число переменных n integer
4. Матрица коэффициентов a at
5. Вектор номеров свободных переменных i1 vec1it
6. Отслеживающий вектор основных переменных прямой задачи p1 vec1it
7. Отслеживающий вектор вспомогательных  переменных двойственной задачи q1 vec1it
8. Отслеживающий вектор вспомогательных  переменных прямой задачи p2 vec2it
9. Отслеживающий вектор основных переменных двойственной задачи q2 vec2it
10. Разрешающая строка r integer
11. Разрешающий столбец s integer
12. Вектор-решение прямой задачи x vec1rt
13. Вектор-решение двойственной задачи u vec2rt

4.2 Укрупненная блок-схема задачи линейного программирования.

5.2 Параметры и заголовки процедур задачи линейного программирования.

   В основной программе используются следующие переменные, которые описаны в разделе var:

          m,n,r,s:integer;{числовые переменные целого типа}

Процедуры программы:

N/N

Назначение

Заголовок

1. Ввод и контроль исходных данных и вывод их в файл результатов input(var k1:k1t; var m,n:integer; var a:at, var i1:vec1it; var p1,q1:vec1it; var p2,q2:vec2it)
2. Исключение свободных переменных issp(var k1:k1t; m,n:integer; var a:at; var i1,p1,q1:vec1it; var p2,q2: vec2it)
3. Исключение нуль-уравнений isnu(var k1:k1t; m,n:integer; var a:at; var p1,q1:vec1it; var p2,q2: vec2it)
4. Поиск опорного решения opor(m,n:integer; var a:at; var p1,q1:vec1it; var p2,q2: vec2it)
5. Поиск оптимального решения optim(m,n:integer; var a:at; var p1,q1:vec1it; var p2,q2: vec2it)
6. Вывод решения прямой задачи outp(m,n:integer; var a:at; var p2: vec2it; x:vec1rt)
7. Вывод решения двойственной задачи outd(m,n:integer; var a:at; var q1: vec1it; u:vec2rt)
8. МЖИ mji ( m,n:integer; var a:at; r,s:integer)
9. Поиск разрешающей строки nstro(m,n:integer; var a:at; r,s:integer var p2:vec2it)

6.2 Блок-схема и параметры реализованной процедуры.

r=1

 

r=k

Страницы: 1, 2, 3, 4, 5, 6


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.