RSS    

   Курсовая работа: Разработка математической модели теплообменника смешения

       (6.3)

где i=m+n и для всех i>n ai=0, а для всех i>m bi=0.

Входящие в эту систему уравнений коэффициенты S1, S2, …, Si связаны с кривой разгона интегральными соотношениями и вычисляются в соответствии с (4), где обозначено  - относительное время.Для расчета S1, S2 … Si используют численные методы (метод прямоугольников, метод трапеций и др.):[2]

 (6.4)

Переход от нормированной передаточной функции к обычной осуществляется путем ее умножения на коэффициент передачи

:         (6.5)

Программа расчет коэффициентов передаточной функции по экспериментальной переходной функции методом площадей в Matlab 6.5

clc,clear

T=0:1:30;

W=tf([1.25],[5 1])

y=step(W, T);

[T' y];

plot(T,y,'k');

grid

Таблица экспериментальных данных 6.1

t y
0 0
1 0.22659
2 0.4121
3 0.56399
4 0.68834
5 0.79015
6 0.87351
7 0.94175
8 0.99763
9 1.0434
10 1.0808
11 1.1115
12 1.1366
13 1.1572
14 1.174
15 1.1878
16 1.199
17 1.2083
18 1.2158
19 1.222
20 1.2271
21 1.2313
22 1.2347
23 1.2374
24 1.2397
25 1.2416
26 1.2431
27 1.2444
28 1.2454
29 1.2462
30 1.2469

 

Рис.6-1. График переходной экспериментальной характеристики.

clear, clc

dt=1

h=[0 0.22659 0.4121 0.56399 0.68834 0.79015 0.87351 0.94175 0.99763 1.0434 1.0808 1.1115 1.1366 1.1572 1.174 1.1878 1.199 1.2083 1.2158 1.222 1.2271 1.2313 1.2347 1.2374 1.2397 1.2416 1.2431 1.2444 1.2454 1.2462 1.2469]

h1=h/1.25

n=length(h)

i=1:n

t=(i-1)*dt

s1=dt*(sum(1-h1)-0.5*(1-h1(1)))

y=step(1.25,[s1 1], t);

plot(t,h,'ko',t,y);

grid

[yexp t]=step(1.25,[s1 1],t)

[s1]

s1 = 5.0054

Рис. 6-2. Совмещённый график расчётной и экспериментальной переходной характеристики.

В результате выполнения программы были получены следующие результаты:

Как видно из рисунка 6.2, экспериментальная и рассчитанная переходные характеристики практически не отличаются. Заключение

В данной курсовой работе была получена математическая модель теплообменника в виде дифференциальных уравнений. Также была получена передаточная функция объекта по заданному каналу (регулирование температуры подаваемой жидкости) и ее переходная характеристика.

Для идеального случая (возмущения отсутствуют) и при наличии возмущений по двум другим каналам была получена модель в переменных состояния. А также по заданному каналу дискретная модель. По экспериментальной передаточной функции с помощью метода площадей была получена расчетная передаточная функция. Сравнение показало, что экспериментальная и расчетная передаточные характеристики практически не отличаются.

Список использованной литературы

1  Полоцкий Л. М., Лапшенков Г.И. «Автоматизация химических производств». Теория, расчет и проектирование систем автоматизации - М:Химия, 1982. – 296 с.

2  Кузьмицкий, И.Ф., Кулаков Г.Т. Теория автоматического управления : учеб. пособие для студентов специальности «Автоматизация технологических процессов и производств». – Минск: БГТУ, 2006. – 486

3  Казаков А.В ,Кулаков М.В, Мелюшев Ю.К.Основы автоматики и автоматизации химических производств.Москва 1970.-374


Страницы: 1, 2, 3, 4, 5


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.