RSS    

   Дипломная работа: Настоящая теория чисел

___

2 + 4 + 6 + 8 + 1 + 3 + 5 = 2|29,

___

7 + 9 + 2 + 4 + 6 + 8 + 1 = 1|37,

___

3 + 5 + 7 + 9 + 2 + 4 + 6 = 9|36,

___

8 + 1 + 3 + 5 + 7 + 9 + 2 = 8|35,

___

4 + 6 + 8 + 1 + 3 + 5 + 7 = 7|34,

___

9 + 2 + 4 + 6 + 8 + 1 + 3 = 6|33,

___

5 + 7 + 9 + 2 + 4 + 6 + 8 = 5|41,

___

1 + 3 + 5 + 7 + 9 + 2 + 4 = 4|31,

___

6 + 8 + 1 + 3 + 5 + 7 + 9 = 3|39.

Таким образом, мы получили ряд 2,1,9,8,7,6,5,4,3.

_____

т.е. Z( |3 + 8), где 8 = 4 * 2, т.е. k = 4.

Легко заметить, что вертикальные ряды представляют из себя циклы с дельтой, равной 5. Это будет происходить во всех случаях. Полученные вертикальные ряды будут являться циклами натуральных корней сложения с дельтой цикла d, равной натуральному корню произведения r - дельты складываемого цикла и n - количества складываемых членов.

Любопытно отметить, что при данном типе сложения натуральный

корень суммы первых семи по порядку членов циклов типа

_____

Z( |0 + r) равен r.

_______ _______

2. |х1 + х2 = у1, |х2 + х3 = у2 и т.д.

___

При n = 2, k = 2 = |n ;

___

n = 3, k = 6 = |2n ;

___

n = 4, k = 3 = |3n ;

___

n = 5, k = 2 = |4n ;

___

n = 6, k = 3 = |5n ;

___

n = 7, k = 6 = |6n ;

___

n = 8, k = 2 = |7n . 

____________ _____________

3. |х1 + х2 + х3 = у1, |х2 + х3 + х4 = у2 и т.д.

________________ _________________

4. |х1 + х2 + х3 + х4 = у1, |х2 + х3 + х4 + х5 = у2.

_____________________ _____________________

5 .|х1 + х2 + х3 + х4 + х5 = у1, |х2 + х3 + х4 + х5 + х6 = y2,

_________________________ __________________________

6. |х1 + х2 + х3 + х4 + х5 + х6 = у1, |х2 + х3 + х4 + х5 + х6 + х7 = у2,

______________________________ ______________________________

7. |х1 + х2 + х3 + х4 + х5 + х6 + х7 = у1, |х2 + х3 + х4 + х5 + х6 + х7 + х8 = у2.

__________________________________ __________________________________

8. |х1 + х2 + х3 + х4 + х5 + х6 + х7 + х8 = у1, |х2 + х3 + х4 + х5 + х6 + х7 + х8 + х9 = у2

При каждом из этих типов сложения по вертикальные ряды будут представлять из себя циклы натуральных корней сложения.

Вышеизложенные типы сложения безусловно взаимосвязаны. Это показывает развитие коэффициента k для различных типов сложения при одинаковом n:

n = 2 k = 4 k = 2

n = 3 k = 9 k = 6 k = 3

n = 4 k = 7 k = 3 k = 8 k = 4

n = 5 k = 7 k = 2 k = 6 k = 1 k = 5

n = 6 k = 9 k = 3 k = 6 k = 9 k = 3 k = 6

n = 7 k = 4 k = 6 k = 8 k = 1 k = 3 k = 5 k = 7

n = 8 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k =8

Получаемые по горизонтали ряды являются частями циклов натуральных корней сложения. Например, при n = 5 мы получаем

_____

ряд 7,2,6,1,5, являющийся частью цикла Z (|3 + 4). 

_____

5.3.2. При поэтапном сложении n членов цикла натуральных корней сложения Z ( |а + b) :

х1,х2,х3 ...хk, находящихся в цикле через h членов, мы получаем цикл натуральных корней сложения

______ ___

Z( |с + d) , где d = |nb путем извлечения натуральных корней из по лучаемых сумм.

Например. При извлечении натуральных корней из сумм членов

_____ _____

Z( |0 + 4) при n = 2 и d = 3 мы получим цикл натуральных корней Z( |3 + 8), где 8 = 2 * 4

При умножении членов цикла натуральных корней умножения

по вышеприведенным принципам, мы получим цикл натуральных корней умножения путем извлечения натуральных корней из получаемых произведений.

_____

Например. Используя принцип 5.3.2. для Z( |5 * 5) при n = 2, d = 3 мы получим цикл натуральных корней

_____ _____

Z( |2 * 7), где 7 = |5 * 2.

5.3.3. Суммы числовых рядов Нижеизложенные принципы являются прямым следствием принципа циклов натуральных корней и, соответственно, принципа эманационного построения числового ряда.

Cумма членов арифметической прогрессии с постоянной дельтой d от любой эманации числа х до любой эманации числа у является постоянной величиной по натуральному корню.

Например. Найдем сумму членов арифметической прогрессии с дельтой d = 1 и первым членом а = 1 от эманаций 1-цы до эманаций 2-ки: ___ ____

Сумма членов от 1 до 2 равна 3, от 1 до 11 равна 3|66, от 10 до 20 равна 3|165, т.е. в любом из этих случаев сумма по натуральному корню равна числу 3.

При рассмотрении сумм членов числовых последовательностей с переменной дельтой d = а,b,с...n от эманаций числа х до эма наций числа у мы найдем, что они не являются постоянными величинами по натуральному корню, но при построении в числовой ряд они представляют из себя цикл натуральных

_____

корней Z( |f + k), где k - натуральный корень суммы членов цикла натуральных корней, который мы получаем путем извлечения натуральных корней из членов данной числовой последовательности. Например. Рассмотрим цикл натуральных корней с переменной дельтой d = 2,7 и первым членом 1. Он будет иметь вид 1,3,1,3,1,3,1,3 и т.д. В данном случае натуральные корни сумм членов от 1до 1 выстроятся в числовой ряд 5,9,4,8,3,7,2,6,1, т.е.

______

цикл натуральных корней Z( |6 + 4), где число 4 является суммой членов цикла натуральных корней с переменной дельтой, т.е. 4 = 1 + 3.

Суммы членов арифметической прогрессии с некоторой постоянной дельтой d от некоторого числа а до чисел, являющихся членами некоторого цикла натуральных корней, представляют из себя члены некоторого цикла натуральных корней при извлечении из них натуральных корней.

Например, рассмотрим арифметическую прогрессию с дельтой d = 2 и первым членом 1: 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37, т.е. цикл натуральных корней 1,3,5,7,9,2,4,6,8. Рассмотрим суммы от числа 1 до чле- нов прогрессии, которые по натуральному корню являются членами цикла натуральных корней 5,2,8:

Сумма от 1 до 5 = 9,

___

от 1 до 11 = 9|36,

___

от 1 до 17 = 9|81,

____

от 1 до 23 = 9|144. _____

Т.е., мы получили цикл натуральных корней Z( |0 + 9).

РАЗДЕЛ 6

СТЕПЕННЫЕ РЯДЫ

6.1. При возведении числа х, имеющего натуральный корень z, в степени, имеющие одинаковый натуральный корень, мы получаем числа, равные по натуральному корню.

Для чисел с натуральным корнем 1,4,7 данное правило всегда верно. Например, возведем число 4 в степени, имеющие натуральный корень2 - степени 2 и11:

2 ___ 11 ________

4 = 7|16, 4 = 7|4194304. Мы получили числа, равные по натуральному корню.

Для чисел с натуральным корнем 2,5,8 данное правило верно, если степени, равные по натуральному корню являются либо только четными, либо только нечетными числами.

Так, при возведении числа 2 в степени, имеющие натуральный корень 2 и являющиеся четными числами, мы получим числа, натуральный корень которых равен 4, при возведении же в степени, также имеющие натуральный корень 2, но являющиеся нечетными числами, мы получим числа, натуральный корень которых равен 5, т.е. числа противоположные числу 4.

Например.

2 20 ________

2 = 4, 2 = 4|1048576 ;

11 ______ 29 __________

2 = 5|2048, 2 = 5|536870912

Если число 8 в четной степени с натуральным корнем 2 даст нам число с натуральным корнем 1, то в нечетной степени число с натуральным корнем 8, т.е. число, противоположное числу 1.

Числа с натуральным корнем 3 и 6 при возведении в любую степень, кроме 1-й, дают числа, натуральный корень которых равен числу 9.

Числа с натуральным корнем 9 при возведении в любую степень дают числа, натуральный корень которых равен числу 9.

6.2. При возведении числа х в степени, являющиеся членами некоторого цикла натуральных корней, получаемые числа также являются членами некоторого цикла натуральных корней.

Например. Возведем число 2 в степени - члены арифметической прогрессии с дельтой d = 2:

1 3 5 ___ 7 ____ 9 ____

2 = 2, 2 = 8, 2 = 5|32, 2 = 2|128, 2 = 8|512. _____ _____

Мы получили цикл натуральных корней 2,8,5, т.е. Z (|5 + 6), или Z( |5 * 4).

Естественно, что при выполнении данного действия и других действий со степенями, необходимо учитывать особенности поведения чисел, имеющих натуральный корень 2,5,8 и 3,6,9.

6.3. При возведении в степени, являющиеся членами цикла натуральных корней, чисел, являющихся членами цикла натуральных корней, мы получаем числа, которые также являются членами некоторого цикла натуральных корней.

_____

Например. Возведем в степени, члены цикла Z( |2 + 9) члены

_____

цикла натуральных корней сложения Z( |8 + 2):

2 2 2 ___ 2 ___ 2 ____ 2 2 ___ 2 ___ 2 ___

1 = 1, 3 = 9, 5 = 7|25, 7 = 4|49, 9 = 9|81, 2 = 4, 4 = 7|16, 6 = 9|36, 8 = 1|64.

_____

Мы получили цикл натуральных корней 1,9,7,4,9,4,7,9,1, имеющий цикл увеличения Z( |9 + 8) и совмещающий три подцикла через 3 знака.

_____ _____

Возведем члены цикла Z(|7 + 3) в степени - члены цикла Z( |7 + 6):

4 1 7 _______

1 = 1, 4 = 4, 7 = 7|823543.

_____

Мы получили цикл натуральных корней 1,4,7, т.е. Z(|7 + 3).

Как мы видим, цикл натуральных корней, состоящий из трех членов, при возведении в степень дает уже известный нам, также состоящий из трех членов, цикл. При возведении же в степень цикла с большим числом членов, мы получаем синтез возведенных в степень троичных циклов.

На основании свойств чисел, указанных в п.п.6.1., определим свойства числового ряда от 1 до 9 при возведении в степень его членов.

Натуральный корень степени

 

Нечетные степени

Четные степени

 

1

1,2,9,4,5,9,7,8,9 1,7,9,4,4,9,7,1,9
2 1,5,9,7,2,9,4,8,9 1,4,9,7,7,9,4,1,9
3 1,8,9,1,8,9,1,8,9 1,1,9,1,1,9,1,1,9
4 1,2,9,4,5,9,7,8,9 1,7,9,4,4,9,7,1,9
5 1,5,9,7,2,9,4,8,9 1,4,9,7,7,9,4,1,9

Страницы: 1, 2, 3, 4, 5, 6, 7


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.