RSS    

   Дипломная работа: Настоящая теория чисел

Раздел 4. Циклы натуральных корней

Основываясь на принципах взаимодействия чисел по натуральному корню, исследуем поведение чисел при их последовательном взаимодействии с другими числами и числовыми последовательностями, а также свойства самих числовых последовательностей по натуральному корню. Рассматриваемые ниже циклы натуральных корней неотрывны от самих числовых последовательностей и являются их следствием.

Определение. Циклом натуральных корней называется периодически повторяющаяся последовательность натуральных корней.

4.1. Циклы натуральных корней сложения

Определение. Циклом натуральных корней сложения называется периодически повторяющаяся последовательность натуральных корней, возникающая в результате извлечения натуральных корней из членов

некоторой числовой последовательности, отличающихся на переменную дельту d = а,b,с,....k, имеющей количество значений h и вычисляемую как положительная разница между соседними членами последовательности.

Правило 7.

Если натуральный корень суммы, полученной последовательным сложением дельт d между членами числового ряда, достигает по натуральному корню значения 9, то натуральный корень следующего числа в этом ряду будет равен натуральному корню, от которого произведен отсчет дельт.

Например

Числовой ряд - 12, 13, 16, 22, 45, 68, 106, 111. Значения дельт - 1, 3, 6, 23, 23, 38, 5.

Сумма дельт равна 99, натуральный корень суммы равен 9. Следовательно, натуральные корни первого и последнего членов ряда должны быть равны.

Действительно, натуральные корни чисел 12 и 111 одинаковы и равны натуральному корню 3.

В этом же ряду мы обнаружим еще одну сумму дельт, натуральный корень которой равен 9, если начнем отсчет от числа 16 с натуральным корнем 7.

Значения дельт в этом случае - 6, 23, 23, 38, 5.

Натуральные корни дельт - 6, 5, 5, 2, 5.

Сложение натуральных корней: 6 + 5 = 11, 11 + 5 = 16, 16 + 2 = 18 ... Натуральный корень числа 18 равен 9. Это означает, что следующее в указанном ряду число будет иметь натуральный корень, равный 7. Действительно, число 106 имеет указанный натуральный корень.

______

Для удобства обозначим натуральные циклы через "Z ( | х + d)", где х - некоторый член цикла, d - дельта цикла, Z символ цикла натуральных корней.

Первым членом цикла q называется натуральный корень числа, получаемого в результате сложения (умножения, см.далее) последнего числа последовательности и дельты d(s). Данный принцип указывает на основное свойство циклов натуральных корней, а именно, первый член цикла натуральных корней всегда является результатом взаимодействия последнего члена цикла с дельтой (или ее членом) цикла.

_____

Основной цикл натуральных корней сложения Z ( |x + d) представляет из cебя объединение циклов натуральных корней сложения количеством h для первых h чисел основного цикла, каждый член которого расположен в основном цикле через h знаков и с дельтой цикла D, равной натуральному корню

суммы членов переменной дельты d основного цикла.

Например. Извлечем натуральные корни из числовой последовательности с первым членом х = 1 и переменной дельтой d = 1; 2, т.е. из числовой последовательности 1,2,4,5,7,8,10,11,13,14... Она примет вид 1,2,4,5,7,8,1,2,4... т.е.

_______

Z( |х + 1;2 ).

Натуральный корень суммы переменной дельты D = 1 + 2 = 3, количество значений переменной дельты h = 2.

Таким образом, полученный цикл 1,2,4,5,7,8 является совмещением 2-х циклов первых 2-х чисел, т.е. чисел 1 и 2, с дельтой цикла D = 1 + 2 = 3 и расположенными через 2 знака в основном цикле. Т.е. два цикла:

_____ _____

1,4,7 - Z( |7 + 3 ) и 2,5,8 - Z( |8 + 3).

Получив цикл 1,2,4,5,7,8 мы вправе поставить на место х число 8, дающее в сумме с членом дельты d1 = 2 первый член цикла - число 1.

Обратим внимание на то, что в полученной числовой последовательности сумма членов дельты составила число 9 к моменту появления числа 10, натуральный корень которого равен 1, при d = 1;2.

Частным случаем циклов натуральных корней сложения с переменной дельтой являются циклы натуральных корней сложения с постоянной дельтой. Для данных циклов, впрочем как для любых циклов натуральных корней действителен принцип объединения подциклов в основном цикле.

Рассмотрим отдельно циклы натуральных корней сложения с постоянной дельтой.

Например. Извлечем натуральные корни из членов арифметической прогрессии с d = 1 и первым членом у = 1: при извлечении натуральных корней прогрессия 1,2,3,4,5,6,7,8,9,10,11,12,13,14...n примет вид

______

1,2,3,4,5,6,7,8,9, т.е. Z( |0 + 1 ).

Если мы извлечем натуральные корни из арифметической прогрессии с d=1, но первым членом 2, то мы получим тот же цикл натуральных корней, но начинающийся с другого члена х = 2,

______

т.е. Z( |1 + 1 ).

Такое вращение цикла не меняет принципа последовательности натуральных корней, поэтому является нецелесообразным рассматривать их как различные циклы, однако при рассмотрении свойств циклов при их взаимодействии (см. далее) различие первого члена будет влиять на результаты взаимодействия.

Естественно, что цикл натуральных корней не изменится, если d будет не единица, а одна из ее эманаций, или первый член будет не единица, а одна из ее эманаций.

Например. Извлечем натуральные корни из членов арифметической прогрессии с d = 19, а первым членом, равным 28. Такая арифметическая прогрессия 28,47,66,85,104,123,142,161 х при извлечении из ее членов натуральных корней также примет вид цикла 1,2,3,4,5,6,7,8,0.

Циклов натуральных корней сложения для арифметических

прогрессий с постоянной дельтой d всего 21:

1) при d = 1: 1,2,3,4,5,6,7,8,0

2) при d = 2: 2,4,6,8,1,3,5,7,0

3) при d = 3 - три цикла: 1,4,7; 2,5,8; 3,6,0

4) при d = 4: 4,8,3,7,2,6,1,5,0

5) при d = 5: 5,1,6,2,7,3,8,4,0

6) при d = 6 - три цикла: 1,7,4; 2,8,5; 3,0,6

7) при d = 7: 7,5,3,1,8,6,4,2,0

8) при d = 8: 8,7,6,5,4,3,2,1,0

9) при d = 9 - девять циклов с количеством членов от 1 до бесконечнос-ти: 1; 2; 3; 4; 5; 6; 7; 8; 0.

Принцип эманационных рядов является частным случаем натуральных циклов сложения при d = 9, а Правило 7 в достаточной мере объясняет принцип появления самих эманаций чисел.

Циклов же натуральных корней сложения для арифметических прогрессий с переменной дельтой существует бесконечное множество.

Определение. Противоположными циклами будут являться циклы, в которых члены, имеющие одинаковый порядковый номер места в цикле, являются противоположными числами.

_____ _____

Например. Цикл Z ( |0 + 1) будет противоположным циклу Z ( |0 + 8).

При постоянной дельте противоположность циклов определяется как противоположность дельт.

4.2. Циклы натуральных корней умножения

Определение. Циклом натуральных корней умножения называется периодически повторяющаяся последовательность натуральных корней, возникающая в результате извлечения натуральных корней из членов числовой последовательности, отличающихся на переменную дельту s = а,b,с...k количеством знаков m, вычисляемую, как целое частное между соседними членами ряда. Обозначим циклы натуральных корней умножения через

_____

Z( |х * s), где х - некоторый член цикла, s - дельта цикла. Получаемый цикл является синтезом циклов натуральных корней умножения количеством h и дельтой цикла S = а*b*с ...*k, расположенных в основном цикле через h знаков.

Например. Извлечем натуральные корни из числовой последовательности с первым членом х = 1 и дельтой

s = 2;4.

Прогрессия 1, 2, 8,16,64,128, 512, 1024, 4096, 8192, 32768 примет вид 1,2,8,7

_____ _____

т.е. синтез двух циклов: 1,8 - Z ( |8 * 8) и 2,7 - Z( |7 * 8), расположенных в основном цикле через 2 знака, а 8 = 2 * 4, т.е. произведение членов дельты s.

Исключение. Если один из членов переменной дельты s или первый член являются эманацией чисел 3,6,0, то получаемый числовой ряд становится периодичным только после некоторого члена ряда.

Циклы натуральных корней умножения с постоянной дельтой являются частным случаем циклов натуральных корней умножения с переменной дельтой. Количество таких циклов ограничено.

Покажем пример такого цикла.

Извлечем натуральные корни из геометрической прогрессии с первым членом х = 5, дельтой s = 2.

5,10,20,40,80,160,320,640,1280 и т.д. примет вид 5, 1 ,2 ,4 ,8 ,7.

_____

Обозначим цикл натуральных корней умножения как Z ( |7 * 2). Несколько циклов натуральных корней применяются и как циклы натуральных корней сложения, и как циклы натуральных корней умножения. Например, такие циклы, как 1,4,7 или 2,8,5. Для циклов натуральных корней умножения верно Правило 7, также как оно верно для любого цикла натуральных корней, если мы рассматриваем его как цикл натуральных корней сложения.

Если же рассматривать правила циклов натуральных корней умножения, то мы найдем, что при получении путем последовательного умножения членов переменной дельты друг на друга числа, натуральный корень которого равен m, в самой числовой последовательности мы получим число хm, натуральный корень которого равен натуральному корню числа х, от которого начинался отсчет. Таблица циклов натуральных корней умножения приведена в Приложении 1, таблица N 4.

4.3. Циклы дельт циклов натуральных корней

Для любого цикла натуральных корней можно найти цикличную последовательность натуральных корней дельт путем извлечения натурального корня из разницы между членами цикла по порядку n2-n1,n3-n2,n4-n3 и т.д. вплоть до разницы между последним и первым членами цикла.

Правило 8. Натуральный корень суммы членов цикла дельт любого цикла натуральных корней будет равен 9.

Страницы: 1, 2, 3, 4, 5, 6, 7


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.