RSS    

   Дипломная работа: Настоящая теория чисел

Например. Циклом дельт по сложению для цикла 1,8,1,1,8,1,1,8,1 будет цикл дельт 7,2,0, натуральный корень суммы членов которого равен 9.

Для любого цикла натуральных корней количеством членов n можно найти цикличную последовательность натуральных корней дельт количеством n-1, получаемую в результате сложения членов цикла по порядку n1+n2, n2 +n3, n3+n4 и т.д. без сложения последнего члена ряда с первым. Из данной последовательности натуральных корней дельт количеством n-1 можно получить последовательность натуральных корней дельт количеством n-2 по тому же принципу сложения членов цикла по порядку; и т.д. вплоть до получения последовательности натуральных корней дельт количеством 1 - базовой дельты. Количество последовательностей (циклов) натуральных корней дельт для цикла натуральных корней количеством членов n равно n - 1, а с учетом основного цикла равно n. Полученные последовательности натуральных корней дельт можно выстроить в треугольный циклид.

Например: извлечем последовательности (циклы) натуральных корней дельт

_____

из цикла Z ( |0 +1).

_____

1 2 3 4 5 6 7 8 9 - Z ( |0 +1)

_____

3 5 7 9 2 4 6 8 часть Z ( |1 +2)

_____

8 3 7 2 6 1 5 часть Z ( |4 +4)

_____

2 1 9 8 7 6 часть Z ( |3 +8)

_____

3 1 8 6 4 часть Z ( |5 +7)

_____

4 9 5 1 часть Z ( |8 +5)

_____

4 5 6 часть Z ( |3 +1)

_____

9 2 часть Z ( |7 +2)

_____

2 часть Z ( |7 +4)

_____

Примечание. В случае полученного числа 2 цикл Z ( |7 +4) определен в силу того, что все дельты получаемых циклов последовательностей натуральных корней дельт получаются в результате умножения на 2 и извлечения натурального корня из полученного числа.

Получение треугольных циклидов последовательностей натуральных корней дельт возможно и по другим принципам, например по принципам вычитания или умножения членов цикла по порядку.

_____

Приведем пример треугольного циклида для Z ( |1*2) по принципу умножения:

_____

2 4 8 7 5 1 Z ( |1*2)

____

8 5 2 8 5 часть Z( |2*4)

_____

4 1 7 4 часть Z ( |7*7)

_____

4 7 1 часть Z ( |1*4)

____

1 7 часть Z ( |4*7)

7

Однако, можно утверждать, что подобное приведение последовательностей натуральных корней дельт к виду треугольного циклида не является причиной появления цикла натуральных корней количеством членов равным одному, а является следствием разложения базовой дельты на возможные варианты суммы, разницы и пр. Так, разложение базовой дельты как натурального корня на два натуральных корня по принципу сложения имеет всего девять вариантов, на три натуральных корня мы будем рассматривать разложение отдельно каждого из двух полученных ранее натуральных корней опять же на два варианта, таким образом, для каждого разложения на два натуральных корня мы также получим девять разложений на три натуральных корня и т.д.

Например:

натуральный корень можно разложить как 1,8; 2,7; 3,6; 4,5; 5,4; 6,3; 7,2; 8,1; 9,9.

Разложим вариант 1,8 на возможные сочетания из трех натуральных корней:

9

1 8

1 9 8

2 8 9

3 7 1

4 6 2

5 5 3

6 4 4

7 3 5

8 2 6

9 1 7

Данный принцип получения из цикла натуральных корней цикличной последовательности натуральных корней дельт дает возможность понимания состава чисел из цифр и натуральных корней.

Раздел 5. Действия с циклами

5.1. Взаимодействие числа с циклом натуральных корней.

При взаимодействии числа с циклом каждый член цикла натуральных корней обособленно взаимодействует с числом.

Правило 9. При извлечении натуральных корней из числовой последовательности, полученной путем взаимодействия числа с циклом натуральных корней, мы получаем цикл натуральных корней.

Формулы взаимодействия числа с циклом натуральных корней:

_____ _____ _____

1. Z ( |х + d) + а => Z ( |с + d), где с = |х + а ;

_____ _____ _____

2. Z ( |х + d) - а => Z ( |с + d), где с = |х - а ;

______ ______ _____

3. Z( |х + d) * а => Z( |с + d), где с = |х * а ;

_____ _____ _____

4. Z( |х + d) : а => Z( |c + d), где с = |d : а ;

_____ _____ _____

5. Z( |х * s) * а => Z( |c * s), где с = |х * а, исключая

случаи, когда х или s являются эманациями натуральных корней 3,6,0;

_____ _____ ____

6. Z( |х * s) : а => Z( |c * s), где с = |х : а, исключая

случаи, указанные в правилах умножения;

_____ ____

7. Z( |х * s) + а => Z, циклом дельт которого будет Z(s) = Z( |х * s );

_____ _____

8. Z( |х * s ) - а => Z, циклом дельт которого будет Z(s) = Z( |х * s).

Например. _____

Прибавим к циклу натуральных корней Z( |1 + 2) число 4:

_____

Цикл Z( |1 + 2) - 3,5,7,9,2,4,6,8,1.

Прибавим к каждому члену число 4: 3 + 4 = 7, 5 + 4 = 9, 7 + 4 = 11, 9 + 4 = 13, 2 + 4 = 6, 4+ 4 = 8, 6 + 4 = 10, 8 + 4 = 12, 1 + 4 = 5.

Мы получили числовую последовательность 7,9,11,13,6,8,10,12,5.

При извлечении из нее натуральных корней мы получим цикл натуральных корней 7,9,2,4,6,8,1,3,5, т.е.

______

Z ( |5 + 2), где 5 = 1 + 4.

Естественно, что при продолжении действия последовательность натуральных корней не изменится. Также она не изменится и при применении любых эманаций членов цикла натуральных корней вместо них.

При взаимодействии числа с циклом натуральных корней, представляющим из себя синтез n подциклов мы получаем цикл натуральных корней, синтезирующий n подциклов, полученных в результате взаимодействия числа х с подциклами основного цикла.

5.2. Взаимодействие цикла натуральных корней с циклом натуральных корней

При взаимодействии одного цикла натуральных корней с другим циклом натуральных корней член одного цикла натуральных корней, являющийся некоторым n-м знаком этого цикла, взаимодействует

с членом другого цикла натуральных корней, являющийся некоторым n-м знаком этого цикла. Возможно взаимодействие и большего, чем два, количества циклов.

Правило 10. При извлечении натуральных корней из числовой последовательности, полученной путем взаимодействия одного цикла натуральных корней с другим, мы получаем цикл натуральных корней.

Формулы взаимодействия циклов натуральных корней:

_____ _____ _____

1. Z( |х + у) + Z( |а + b) => Z( |с + d),

_____ _____

где с = |х + а, d = |у + b;

______ ______ _____ _____ _____

2. Z( |х + у ) - Z( |а + b) => Z( |с + d), где с = |х - а, d = |у - b ;

_____ _____

3. Z( |х + у) * Z( |a + b) => Z, циклом дельт которого Z(d) будет один из циклов натуральных корней сложения;

_____ _____ _____ ____ ____

4. Z( |х * у) * Z( |а * b) => Z( |c * d), где с = |х *а, d = |у * b;

_____ _____ _____ ____ ____

5. Z(|х * у) : Z( |а * b) => Z( |c * d), где с = |х : а, d = |у : b;

_______ ___ ____

| n _______ | n | n

6. Z( |(х * у) ) = Z( |(c * d) ), где с = |(х) , d = |(у) .

При умножении или делении циклов натуральных корней умножения исключением являются случаи применения циклов натуральных корней умножения, первый член или дельта которых являются эманациями чисел 3,6,9.

Покажем это на примере арифметической прогрессии. Прибавим к арифметической прогресии

_____

1,4,7,10,13,16,19,22,25,т.е. Z( |7 + 3) арифметическую прогрессию

_____

3,5,7,9,11,13,15,17,19, т.е. Z( |1 + 2):

1 + 3 = 4, 4 + 5 = 9, 7 + 7 = 14, 10 + 9 = 19, 13 + 11 = 24,

16 + 13 = 29, 19 + 15 = 34, 22 + 17 = 39, 25 + 19 = 44.

Мы получили числовую последовательность 4,9,14,19,24,29,34,39, 44. При извлечении из нее натуральных корней мы получим последовательность натуральных корней 4,9,5,1,6,2,7,3,8,т.е.

_____

Z( |8 + 5), где 8 = 7 + 1, 5 = 3 + 2.

Приведем пример для формулы 6. Возведем члены цикла натуральных корней

______

умножения Z( |2 * 5 ) в степень а = 2:

2 2 ___ 2 ___ 2 ____ 2 ___ 2

1 = 1; 5 = 7|25; 7 = 4|49 ;8 = 1|64 ; 4 = 7|16 ; 2 = 4.

Путем извлечения натуральных корней мы получили цикл натуральных 

__ __ 

______ | 2 | 2

корней умножения Z( |4 * 7), где 4 = |2 , 7 = |5.

При взаимодействии циклов мы получаем цикл натуральных корней, который совмещает в себе подциклы, полученные в результате взаимодействия подциклов основных циклов.

5.3. Взаимодействие членов цикла.

Рассмотрим свойства циклов натуральных корней сложения с постоянной дельтой. Данная часть раздела показывает лишь внутренние взаимодействия таких циклов и указывает на возможность подобных взаимодействий для циклов натуральных корней с переменной дельтой.

5.3.1. При сложении членов цикла натуральных корней сложения

_____

Z( |р + r) количеством n и дальнейшем извлечении натуральных корней из получаемых сумм, мы получаем цикл натуральных корней

_____

сложения сумм Z( |а + b), где b = kr, где k - коэффициэнт.

Рассмотрим различные типы сложения для ряда х1,х2,х3,х4, х5,х6,х7,х8,х9.

_______ _______

1. |х1 + х2 = у1, |х3 + х4 = у2 и т.д.

При данном типе сложения коэффициент k будет равен

натуральному корню из квадрата количества членов n, т.е. при n = 2, k = 4;

n = 3, k = 9;

____

n = 4, k = 7|16;

____

n = 5, k = 7|25;

____

n = 6, k = 9|36;

____

n = 7, k = 4|49;

____

n = 8, k = 1|64; 

______

Например. Сложим члены цикла Z( |0 + 2 ) при n = 7:

Страницы: 1, 2, 3, 4, 5, 6, 7


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.