RSS    

   Теория цепных дробей - (реферат)

p>Согласно принципу полной математической индукции равенство верно для всех k().

Теорема: Числитель и знаменатель любой подходящей дроби – взаимно простые числа, то есть всякая k–подходящая дробь несократима. Доказательство: Докажем это свойство методом от противного. По предыдущему свойству имеем . Пусть , то есть , тогда из равенства следует, что делится на без остатка, что невозможно. Значит, наше допущение неверно, а верно то, что требовалось доказать, то есть .

    Теорема: При
    ()
    ()

Доказательство: Первое соотношение можно получить из равенства , доказанного выше, путем деления обеих частей на . Получаем , что и требовалось доказать.

    Докажем второе соотношение.
    .
    Теорема доказана полностью.

Теорема: Знаменатели подходящих дробей к цепной дроби, начиная с первого, образуют монотонно возрастающую последовательность, то есть 1=. Доказательство: , , так что и положительны.

Соотношение () (*) показывает, что и все следующие знаменатели , , …, положительны. При , поскольку тогда , из (*) получаем , что и требовалось доказать.

Теорема: Нечетные подходящие дроби образуют возрастающую, а четные подходящие дроби – убывающую последовательность: ;

    .

Две подходящие дроби и , у которых номер отличается на единицу, будем называть соседними. Теорема: Из двух соседних подходящих дробей четная дробь всегда больше нечетной. Доказательство: По уже доказанному выше свойству имеем:

    .
    Если k – четное, то
    Если k – нечетное, то

Значит, из двух соседних дробей и четная всегда больше нечетной, что и требовалось доказать.

Теорема: Расстояние между двумя соседними подходящими дробями . Доказательство: Так как , то , что и требовалось доказать.

    Глава II. Бесконечные цепные дроби.

§1. Представление действительных иррациональных чисел правильными бесконечными цепными дробями. Разложение действительного иррационального числа в правильную бесконечную цепную дробь. В предыдущей главе мы рассмотрели, как в процессе последовательного выделения целой части и перевертывания дробной рациональная дробь разлагается в конечную непрерывную дробь. =() (1)

и, наоборот, свертывание такой непрерывной дроби приводит к рациональной дроби. Процесс выделения целой части и перевертывания дробной можно применить к любому действительному числу. Для иррационального числа указанный процесс должен быть бесконечным, так как конечная цепная дробь равна рациональному числу. Выражение (где , ) (2)

возникающее в таком процессе или заданное формально, мы будем называть правильной бесконечной цепной, или непрерывной дробью, или дробью бесконечной длины и обозначать кратко через (), а числа – ее элементами или неполными частными. Отметим, что разложение возможно только в единственном виде, так как процесс выделения целой части – процесс однозначный. Рассмотрим пример разложения иррационального числа .

Пусть . Выделим из его целую часть. =3, а дробную часть –3, которая меньше 1, представим в виде , где . Повторяя операцию выделения целой части и перевертывания дробной, мы получаем: ;

    ;
    .
    Если остановиться на этом шаге, то можно записать:

С другой стороны, из формулы для видно, что =3+. Поэтому , вследствие чего, начиная с этого момента, неполные частные станут повторяться. Бесконечная непрерывная дробь, в которой определенная последовательность неполных частных, начиная с некоторого места, периодически повторяется, называется периодической непрерывной дробью. Если, в частности, периодическое повторение начинается с первого звена, то цепная дробь называется чисто периодической, в противном случае – смешанной периодической. Чисто периодическая дробь записывается в виде , а смешанная периодическая в виде . Итак, разлагается в смешанную периодическую дробь (3, 3, 6, 3, 6, …) или (3, (3, 6)). В общем случае разложения действительного иррационального числа поступаем так же, как в примере. Останавливаясь при этом в процессе выделения целой части после k–го шага, будем иметь:

    так что

Числа называются остаточными числами порядка k разложения . В формуле (4) имеем кусок разложения до остаточного числа . Для бесконечной цепной дроби (2) можно построить бесконечную последовательность конечных непрерывных дробей.

Эти дроби называют подходящими дробями. Закон образования соответствующих им простых дробей будет такой же, как и для подходящих дробей в случае конечных непрерывных дробей, так как этот закон зависит только от неполных частных и совершенно не зависит от того, является ли последним элементом или за ним следует еще элемент . Поэтому для них сохранятся также остальные свойства, которые выводятся из закона образования числителей и знаменателей подходящих дробей. В частности, мы имеем:

    , причем ;
    , откуда следует несократимость подходящих дробей ;
    .

Сравним теперь подходящую дробь и кусок разложения до остаточного числа . Имеем

откуда видно, что вычисление по формально производится таким же образом, как вычисление по с тем лишь отличием, что в первом случае заменяется на , а во втором заменяется на . Поэтому на основании формулы можно сделать вывод о справедливости следующего важного соотношения . (5)

По этой причине мы пишем также , хотя не является здесь целым положительным числом. При помощи формулы (5) можно вывести следующую теорему и расположении подходящих дробей разложения .

Теорема: Действительное число всегда находится между двумя соседними подходящими дробями своего разложения, причем оно ближе к последующей, чем к предыдущей подходящей дроби. Доказательство: Из формулы (5) следует

    Но , , так что

() и () имеют одинаковый знак, а это значит, что находится между и ; , то есть ближе к , чем к .

    Теорема доказана.

Так как , то , и так далее; отсюда приходим к следующему заключению о взаимном расположении подходящих дробей: больше всех подходящих дробей нечетного порядка и меньше всех подходящих дробей четного порядка; подходящие дроби нечетного порядка образуют возрастающую последовательность, а четного порядка – убывающую (в случае иррационального указанные последовательности являются бесконечными), то есть

    (в случае рационального ).
    ———————————————————

Учитывая то, что при , вследствие чего , переходим к дальнейшему выводу, что в случае иррационального сегменты , , … образуют стягивающуюся последовательность, которая, как известно, должна иметь единственную общую точку, являющуюся общим пределом последовательностей , , … и , , … . Но так как принадлежит всем сегментам последовательности, то и совпадает с указанной точкой, так что . Итак, мы имеем следующий важный результат:

бесконечная последовательность подходящих дробей , которая возникает при разложении иррационального , сходится к , колеблясь около него. Или: иррациональное действительное равно пределу последовательности подходящих дробей своего разложения в бесконечную непрерывную дробь (процессом выделения целой части).

    Сходимость правильных бесконечных цепных дробей.

Теперь покажем, что сходящейся является последовательность подходящих дробей не только такой бесконечной непрерывной дроби, которая возникает при разложении иррационального числа , но и любой бесконечной непрерывной дроби , где , а - произвольно выбранные целые положительные числа. Но для этого мы заново исследуем взаимное расположение подходящих дробей. С этой целью рассмотрим формулы:

    (1) и (2),

которые справедливы для любой бесконечной непрерывной дроби. Формула (1) показывает, что любая подходящая дробь четного порядка больше двух соседних подходящих дробей, у которых порядок на единицу меньше или больше, чем у нее, то есть и . Согласно этому и расположены слева от , и – слева от и так далее. Формула (2) показывает, что расстояние между соседними подходящими дробями при увеличении k убывает. Действительно, так как , то

Согласно этому свойству ближе к , чем , а так как и находятся слева от , то
    —————————————————

Из этого следует, что подходящая дробь , которая, как и , расположена справа от , ближе к , чем к , то есть

Единственность представления действительного иррационального числа правильной бесконечной цепной дробью.

Исходя из результатов, которые мы получили выше, можно утверждать, что для каждого действительного иррационального существует представление в виде бесконечной непрерывной дроби. Таким представлением является разложение в бесконечную непрерывную дробь, так как предел подходящих дробей последней равен как раз . Возникает вопрос, сколько представлений действительного иррационального в виде бесконечных непрерывных дробей существует вообще? Покажем, что только одно. Другими словами: представление действительного иррационального в виде бесконечной непрерывной дроби всегда является разложением с помощью выделения целой части. Докажем это важное утверждение. Пусть действительное иррациональное представлено бесконечной непрерывной дробью , то есть =. Назовем бесконечную непрерывную дробь остатком данной дроби порядка k. Так как любая бесконечная непрерывная дробь представляет некоторое действительное число, то это утверждение относится также и к остатку . Обозначим его через , =, то есть =. Аналогично =, то есть =. Из соотношения получаем , то есть = (1).

Так как при , то все >1, а

§2. Приближение действительного числа рациональными дробями с заданным ограничением для знаменателя. Рациональные числа образуют счетное множество, в то время как множество иррациональных чисел несчетно. В этом смысле можно сказать, что основную массу всех действительных чисел составляют иррациональные числа. Применение иррациональных чисел в практике обычно осуществляется заменой данного иррационального числа некоторым рациональным числом, мало отличающимся в пределах требуемой точности от этого иррационального числа. При этом обычно стараются выбрать рациональное число возможно простым, то есть в виде десятичной дроби с небольшим числом знаков после запятой или в виде обыкновенной дроби со сравнительно небольшим знаменателем. Для громоздких рациональных чисел, то есть чисел с большими знаменателями, также иногда возникают задачи, связанные с необходимостью отыскания хороших рациональных приближений, понимая под этим отыскание рациональных чисел со сравнительно небольшими знаменателями, мало отличающимися от данных чисел. Цепные дроби дают очень удобный аппарат для решения задач такого рода. С помощью цепных дробей удается заменять действительные числа рациональными дробями так, что ошибка от такой замены мала по сравнению со знаменателями этих рациональных чисел.

Страницы: 1, 2, 3, 4, 5, 6


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.