RSS    

   Прикладная математика - (реферат)

p>В этих цитатах достаточно ярко освещена психологическая сторона вопроса. Но независимо от этого нужно подчеркнуть, что ныне все чаще признается объективное существование прикладной математики. Однако и за подобным признанием скрываются различные точки зрения. Так, некоторые считают, что прикладная математика —это “шир-потребная”, в дурном смысле, часть математики, существующая в виде логически недоработанного и несовершенного (возможно, из-за низкой математической культуры специалистов в этой области) набора некоторых приемов, рецептов и правил. Указанные недостатки прикладной математики должны быть преодолены, в результате чего эта “недоматематика” возвысится до нормального математического уровня. Думается, что эта наивная, но распространенная точка зрения, если она не является проявлением снобизма, основана на тяжелом непонимании истинной ситуации. В самом деле, как с этой точки зрения можно объяснить то, что физики, инженеры-теоретики и другие специалисты, среди которых, бесспорно, имеется немало неглупых людей, применяя математику, упорно уклоняются от строго дедуктивного языка? И хотя в институтах их систематически учат этому языку, они (себе во вред? ) предпочитают переучиваться, переходя на язык прикладной математики и перестраивая весь образ математического мышления. В действительности такая перестройка порой напоминает ломку, так как при этом отбрасываются многие “чистые” определения, теоремы и приемы, на которых категорически настаивает чисто дедуктивный образ мышления. По моему мнению, такая перестройка вполне естественна и единственное объяснение ее состоит в том, что она необходима. Другая точка зрения отождествляет прикладную математику с вычислительной и машинной математикой. Эта точка зрения представляется узкой и создающей одностороннюю ориентацию. Математическое решение прикладных задач обладает серьезной спецификой. Прежде всего, здесь принципиально недостижима доказательность того же уровня, что в чисто математических исследованиях, хотя бы потому, что математическая модель реального объекта может описывать лишь существенные в том или ином смысле черты этого объекта, но никогда не претендует и не должна претендовать на его полное описание. С другой стороны, к решению прикладных задач предъявляются требования, которые в чисто математических исследованиях считаются второстепенными: прикладная задача должна быть решена не только правильно, но и своевременно, экономно по затраченным усилиям, решение должно быть доступным для существующих вычислительных средств и пригодным для фактического использования, точность решения должна соответствовать задаче и тому подобное. Наилучшее выполнение всех этих порой противоречащих друг другу требований условно назвалиоптимальностью решения (по отношению к приложениям), хотя на данном этапе развития науки единую функцию цели было бы указать затруднительно. Исходя из этого, было предложено определение прикладной математики как науки об оптимальных, грубо говоря, практически приемлемых методах решения математических задач, возникающих вне математики. Таким образом, прикладная математика —это математика, опосредствованная практикой, это как бы составная дисциплина наподобие биохимии или теплотехники.

Развитие этой дисциплины определяется как расширением круга приложений, так и изменением конкретного содержания понятия оптимальности решения задачи; в частности, это содержание существенно изменилось под влиянием современных вычислительных средств. Само собой разумеется, что если мы ищем оптимальное решение, то это не значит, что мы должны отвергать решения, лишь приблизительно отвечающие требованию оптимальности. Значительная часть реальных решений, которыми мы пользуемся, как раз и есть решения, в данное время в какой-то мере удовлетворяющие этому требованию.

По данному поводу можно напомнить известный афоризм: “Чистая математика делает то, что можно, так, как нужно, а прикладная — то, что нужно, так, как можно”. Представляется привлекательной и точка зрения, высказанная Л. В. Овсянниковым: “Прикладная математика — это наука о математических моделях; более подробно можно сказать — о построении, исследовании, интерпретации и оптимизации математических моделей”. Это определение, выделяющее объект науки, на мой взгляд, отнюдь не противоречит предыдущему, которое имеет более функциональный характер. Таким образом, если проводить аналогию— в целом, довольно далекую —между математикой и языком, то чистая и прикладная математика будут напоминать грамматику и семантику соответственно.

Дискуссии о том, образует ли прикладная математика самостоятельную науку, представляются несколько схоластическими из-за многозначности выражения “самостоятельная наука”. Возможно, что более правильно говорить не о науке, а об определенном аспекте математики, возникающем при ее приложениях, так сказать, о результате своеобразного “проецирования” математики на цивилизацию; важно, что при таком проецировании математика приобретает качественно новые черты. Это проецирование, эти черты и определяют прикладную математику.

Приведу в заключение яркие слова Р. Куранта, говорящие о различии подхода к проблемам чистой и прикладной математики: ”Одна и та же математическая проблема может быть решена по-разному; приверженец строгого математического подхода (а стремление к таковому временами возникает у всякого человека, склонного к научному мышлению) требует бескомпромиссного совершенства. Он не допускает никаких пробелов в логике мышления и в решении поставленных задач, а достигнутый результат, по его мнению, должен быть венцом неразрывной цепи безупречных рассуждений. И если сторонник такого подхода сталкивается с трудностями, которые ему кажутся непреодолимыми, то он скорее попытается переформулировать задачу или даже поставить другую, родственную ей, трудности которой он может преодолеть. Существует и другой обходной путь: заново определить то, что считалось “решением проблемы”; в действительности подобная процедура иногда представляет собой довольно общепринятый предварительный шаг к подлинному решению исходной задачи. В исследованиях прикладного характера все выглядит по-иному. Прежде всего, поставленную задачу нельзя с такой легкостью видоизменить или обойти. Здесь требуется другое; дать правильный и надежный с общечеловеческой точки зрения ответ. В случае необходимости математик может пойти на компромисс: он должен быть готов внести догадки в цепь рассуждений, а также допустить известную погрешность в числовых значениях. Однако даже задачи в основном практического направления, например о течениях, с ударными волнами, могут потребовать фундаментального математического исследования, чтобы установить, корректно ли поставлена такая задача. В прикладных исследованиях могут понадобиться и доказательства чисто математических теорем существования, поскольку уверенность в том, что имеется решение, может гарантировать достоверность используемой математической модели. И, наконец, в прикладной математике доминируют аппроксимации (приближения) — без них невозможно обойтись при переносе реальных, физических процессов на математические модели. Обращение с реальностью, преобразованной в абстрактные математические модели, и оценка точности достигаемых при этом соответствий требуют интуитивных навыков, совершенствуемых опытом. Часто необходимо как-то преобразовать исходную математическую проблему, которая оказывается слишком сложной для решения современными методами. Это отчасти объясняет характер интеллектуального риска и удовлетворение, которое испытывают математики, работающие с инженерами и естествоиспытателями над решением реальных задач, возникающих всюду, куда проникает человек в своем стремлении к познанию природы и управлению ею”.

    2. Основные элементы прикладной математики.
    2. 1. Математические модели.

Исследование прикладных задач обычно начинается с построения и анализа простейшей, наиболее грубой математической модели рассматриваемого объекта. Однако в дальнейшем часто возникает необходимость уточнить модель, сделать её соответствие объекту более полным. Это может быть обусловлено разными причинами: требованием более высокой точности, появление новой информации об объекте, которую нужно отразить в математической модели, расширением диапазона параметров, выводящим за пределы применимости исходной модели, и так далее. При построении новой модели полезно максимально полно использовать опыт и результаты, полученные на первом этапе. Часто процесс последовательного развития и уточнения модели повторяется неоднократно.

В настоящее время нельзя назвать область человеческой деятельности, в которой в той или иной степени не использовались бы методы моделирования. Остановимся на общей теории моделирования.

Методологическая основа моделирования заключается в следующем. Все то, на что направлена человеческая деятельность, называетсяобъектом (лат. objectum –предмет). Выработка методологии направлена на упорядочение получения и обработки информации об объектах, которые существуют вне нашего сознания и взаимодействуют между собой и внешней средой.

В научных исследованиях большую роль играют гипотезы, то есть определенные предсказания, основывающиеся на небольшом количестве опытных данных, наблюдений, догадок. Быстрая и полная проверка гипотез может быть проведена в ходе специально поставленного эксперимента. При формулировании и проверки правильности гипотез большое значение в качестве метода суждений имеет аналогия.

Аналогией называют суждение, о каком либо частном сходстве двух объектов, причем такое сходство может быть существенным и несущественным. Необходимо отметить, что понятия существенности и несущественности сходства или различия объектов условны и относительны. Существенность сходства (различия) зависит от уровня абстрагирования и в общем случае определяется конечной целью проводимого исследования. Современная научная гипотеза создается, как правило, по аналогии с проверенными на практике научными положениями. Таким образом, аналогия связывает гипотезу с экспериментом.

Страницы: 1, 2, 3, 4


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.