RSS    

   Пространственная ориентация живых организмов посредством зрительной сенсорной системы

даваемых рабдомерной организацией глаза.

Со времен Экснера (Ехnеr, 1891) сложные глаза членистоногих принято

относить к одному из двух типов — суперпозиционному или аппозиционному – в

зависимости от способа образования изображения. Однако, как показали

последующие исследования, между глазами обоих типов существуют и другие

более глубокие различия (см., например: Goldsmith, 1964; Мазохин-Поршняков,

1965; Post a. Goldsmith, 1965). Дело в том, что суперпозиционным глазом

обладают насекомые, обитающие в условиях слабой освещенности (ведущие

главным образом ночной образ жизни), тогда как аппозиционный глаз присущ

дневным насекомым. Суперпозиционному глазу свойственна очень высокая

светочувствительность (и большая общая светосила) при малой скорости

адаптации, причем важная роль в процессе адаптации принадлежит миграции

гранул экранирующего пигмента (за счет миграции пигмента чувствительность

суперпозиционного глаза может изменяться, например, на 2 порядка) (Post a.

Goldsmith, 1965). Аппозиционный глаз характеризуется высокой скоростью

адаптации, отсутствием миграции пигмента при изменении освещенности и

значительно меньшей общей светочувствительностью. Учитывая это, Пост и

Голдсмит (Post a. Goldsmith, 1965) предложили изменить терминологию и

подразделять сложные глаза насекомых на два типа по совокупности их оптико-

адаптационных характеристик, называя их соответственно скотопическим и

фотопическим типом глаза. Такая классификация, конечно, лучше отражает те

сдвиги, которые произошли в изучении зрения насекомых в последнее время

(рис. 5).

Благодаря довольно многочисленным электронномикроскопическим работам

(Femandez-Mordn, 1956, 1958; Daneel u. Zeutzschel, 1957; Goldsmith a.

Philpott, 1957; Wolken, Capenos a. Turauo, 1957; Yasusumi a. Deguchi,1958;

Wolken a. Gupta, 1961; Goldsmith, 1962: Грибакин, 1967) общая

ультраструктурная организация ретинулярной клетки известна достаточно

хорошо.

В фоторецепторах позвоночных структура, поглощающая свет (т. е. наружный

сегмент), в значительной степени разобщена с телом клетки, тогда как у

членистоногих рабдомеры идут параллельно телам ретинулярных клеток.

Возможно, именно этим и объясняется большее быстродействие глаза насекомых

по сравнению с глазом позвоночных (у пчелы критическая частота слияния

мельканий достигает 300 вспышек в секунду).

В дистальной области клетки (наиболее близкой к кристаллическому конусу)

обычно сосредоточено наибольшее количество митохондрий и гранул

экранизирующего ретинулярного пигмента [муха Lucilia (Trujillo-Cenoz,

1965); пчела (Грибакин, 1967)]. В этой же области чаще всего встречаются

мембраны шероховатой эндоплазматической сети, которая имеет

непосредственное отношение к синтезу белка (Porter, 1961). Возможно, такая

насыщенность дистальной области клетки важными органоидами свидетельствует

о повышенной энергетической активности этой области. Последнее

предположение подкрепляется тем, что в аппозиционном глазу плоскость

изображения (и, следовательно, область максимальной освещенности)

приходится именно на дистальную область ретинулы (Ехnеr, 1891; Vries a.

Kuiper, 1958). Электронномикроскопические исследования показывают, что

микровиллы рабдомеров связаны с центральной частью клетки системой

радиальных тяжей – «мостиков» (табл. XXXVI) (Грибакин, 1969). Эта система

по сути дела представляет собой крупную цитоплазматическую цистерну

(главная эндоплазматическая цистерна, по Грибакину). которая тянется

параллельно рабдомеру, сопровождая его по всей длине зрительной клетки

(около 250 мк у пчелы). Удается проследить переход мембраны, окружающей

главную цистерну, в мембрану каналов эндоплазматической сети. Интересно

отметить, что эта цистерна продолжается вплоть до места отхождения аксона.

Примерный подсчет показывает, что объем главной эндоплазматической цистерны

зрительной клетки пчелы составляет для темноадаптированного глаза около

150—250 мк3, а объем рабдомера – 75-150 мк3. Далее, удается отметить

феномен прилежания митохондрий к мембранам эндоплазматической сети, что

свидетельствует о локальных интенсивных энергетических процессах, связанных

с потреблением АТФ. Таким образом, цистерна и эндоплазматическая сеть,

вероятно, отличаются по ионному составу от цитоплазматического матрикса,

что может быть связано с активным переносом ионов и, по-видимому, передачей

нервного возбуждения внутри зрительной клетки. Ядро ретинулярной клетки

обычно вытянуто по длине клетки. У некоторых насекомых (например у восковой

моли) оно способно перемещаться вдоль клетки при изменении освещенности

(Post a. Goldsmith, 1965).

В проксимальной области ретинулярной клетки под электронным микроскопом

видны многочисленные протонейрофибриллы, характерные для аксона;

митохондрии обычно смещены в периферическую область,. что также характерно

для аксона; рабдомер здесь постепенно сходит на нет. Проксимальный конец

рабдома, представляющий собой оптический волновод обычно закрыт «оптической

пробкой» (Грибакин, 1967), состоящей из утолщений интерретинулярных тяжей,

заполненных гранулами экранирующего пигмента. Такая «пробка», очевидно,

препятствует проникновению света в более высокие отделы зрительного тракта,

где свет (и в особенности ультрафиолетовое излучение) может вызывать

нарушение работы клеток оптических центров.

В настоящее время ведутся дискуссии о том, что является функциональной

единицей сложного глаза – омматидий или отдельная ретинулярная клетка (см.,

например: Goldsmith, 1964). В пользу второго предположения говорит тот

факт, что клетки сложного глаза различаются не только по спектральной

чувствительности и реакции на положение плоскости поляризации падающего

света (Goldsmith, 1964; Мазохин-Поршняков, 1965; Shaw, 1966, 1967), но и по

своим морфологическим характеристикам (рис. 6). Так, например, из

электронных микрофотографий Фернандес-Морана (Fernandez-Moran, 1958) видно,

что ретинула суперпозиционного (или скотопического) глаза ночной

тропической бабочки Erebus odora содержит семь рабдомеров, один из которых

резко отличается от остальных значительно большей площадью поперечного

сечения. Возможно, клетка, образующая этот рабдомер, имеет и наибольшую

светочувствительность (по сравнению с остальными клетками, входящими в

ретинулу).

В последнее время показано (Грибакин, 1967), что ретинула аппозиционного

(или фотопического) глаза пчелы Apis mellifera включает в себя клетки трех

типов, отличающиеся площадью поперечного сечения рабдомеров,. диаметром

микровилл, а также глубиной расположения ядра. Эти типы клеток воспринимают

разную длину излучения, т. е. обусловливают цветовое зрение пчелы. Однако

даже электронный микроскоп не позволяет пока увидеть пути синтеза

зрительного пигмента в клетке, изучить его локализацию. Более того,

изучение зрительных пигментов насекомых сильно осложнено по меньшей мере

двумя причинами. Во-первых, структуры, содержащие зрительный пигмент,

находятся в центре (точнее, в глубине) каждой ретинулы, что затрудняет

получение фракций рабдомеров с помощью методов, которые обычно применяются

биохимиками для получения фракций наружных сегментов сетчатки позвоночных.

Во-вторых, изучение изолированных препаратов глаза осложняется наличием в

каждом омматидии плотного пигментного чехла и оптической «пробки»,

закрывающих проксимальный конец рабдома.

И все же в последнее время в отношении зрительных пигментов насекомых

получено много интересных данных. Так, стало известно, что зрительный

пигмент насекомых имеет значительно меньший молекулярный вес (3000-4000),

чем молекулярный вес зрительных пигментов позвоночных (27 000-28 000)

(Heller, 1969), а следовательно, и диаметр молекулы зрительного пигмента

насекомых значительно меньше – около 5 А против 40 – 50 А у позвоночных.

Получены доказательства того, что в основе зрения многих насекомых (по-

видимому, это справедливо для всех насекомых) лежит ретиналь, который был

найден у пчелы, домашней мухи, некоторых прямокрылых, стрекоз, жуков,

бабочек (Goldsmith, 1958; Wolken, Bowness a. Scheer, 1960; Briggs, 1961).

При этом интересно, что Голдсмиту (Goldsmith, 1958) удалось извлечь

зрительный пигмент из сложного глаза пчелы не детергентамп, а простым

фосфатным буфером; после освещения раствор зрительного пигмента

обесцвечивался, освобождая ретиналь. В 1964 г. Голдсмит и Уорнер (Goldsmith

a. Warner, 1964) четко доказали, что зрительная система рабочей пчелы

строится на основе витамина А (ретинола); в темноте витамин А окисляется до

ретиналя, а на свету ретиналь переходит в витамин А. Голдсмит и Уорнер

Страницы: 1, 2, 3, 4, 5


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.