Основы психогенетики
p align="left">Полная информация о понятии РецессивностьСогласно общепринятому определению, Рецессивность (от лат. recessus - отступление, удаление), одна из форм фенотипического проявления генов. При скрещивании особей, различающихся по определённому признаку, Г. Мендель обнаружил, что у гибридов первого поколения один из родительских признаков исчезает (рецессивный), а другой проявляется (доминантный) (см. Менделизм, Менделя законы). Доминантная (см. Дом) форма (аллель) гена (А) проявляет своё действие в гомо- и гетерозиготном состояниях (АА, Аа), рецессивная же аллель (а) может проявиться лишь в отсутствие доминантной (-а) (см. Гетерозиготность (см. Гетерозиготность), Гомозиготность (см. Гомозиготность)). Т. о., рецессивная аллель - подавляемый член аллельной пары генов. Доминантность (см. Доминантность) (см. Дом) или Р. аллели выявляется лишь при взаимодействии конкретной пары аллельных генов. Это можно проследить при анализе гена, который встречается в нескольких состояниях (так называемая серия множественных аллелей). У кролика, например, имеется серия из 4 генов, определяющих окраску шёрстного покрова (С - сплошная окраска, или агути; cch - шиншилла; ch - гималайская окраска; с - альбинос). Если кролик имеет генотип Ccch то в этом сочетании cch - рецессивная аллель, а в комбинациях cchch и cchc она доминирует, обусловливая окраску шиншилла. Характер проявления рецессивного признака может изменяться под влиянием внешних условий. Так, у дрозофилы имеется рецессивная мутация - "зачаточные крылья", которая в гомозиготе при оптимальной температуре (25 ?С) приводит к резкому уменьшению размеров крыльев. При повышении температуры до 30 ?С размер крыльев увеличивается и может достичь нормы, т. е. проявляться как доминантный признак. Рецессивное действие гена может быть обусловлено замедлением или изменением течения какой-либо биохимической функции. Значительная часть врождённых нарушений обмена веществ у человека наследуется по рецессивному типу, т. е. клиническая картина болезни наблюдается лишь у гомозигот. У гетерозигот заболевание не проявляется за счёт функционирования нормальной (доминантной) аллели (см."Молекулярные (см. Мол) болезни", Наследственные заболевания (см. Наследственные заболевания)). Большинство рецессивных летальных мутаций связано с нарушением жизненно важных биохимических процессов, что приводит к гибели гомозиготных по этому гену особей. Поэтому в практике животноводства и растениеводства важно выявление особей - носителей рецессивных летальных и полулетальных мутаций, чтобы не вовлекать вредные гены в селекционный процесс. Эффект (см. Эффект) инбредной депрессии при близкородственном скрещивании (см. Инбридинг (см. Инбридинг)) связан с переходом вредных рецессивных генов в гомозиготное состояние и проявлением их действия. Вместе с тем в селекционной практике рецессивные мутации часто служат ценным исходным материалом. Так, их использование при разведении норок дало возможность получать зверей со шкурками платиновой, сапфировой и других окрасок, которые часто ценятся дороже тёмно-коричневых норок дикого типа. При проведении генетического анализа применяют скрещивание гибрида с родительской формой, гомозиготной по рецессивным аллелям. Так удаётся выяснить гетеро- или гомозиготность по анализируемым парам генов. Рецессивные мутации играют важную роль в эволюционном процессе. Советский генетик С. С. Четвериков показал (1926), что природные популяции содержат огромное количество разнообразных рецессивных мутаций в гетерозиготном состоянии. Ср. Доминантность (см. Доминантность) (см. Дом), Кодоминантность (см. Кодоминантность). ? Лит.: Лобашев М. Е., Генетика (см. Генетика) (см. Ген), 2 изд., Л., 1967; Маккьюсик В., Генетика (см. Генетика) (см. Ген) человека, пер. с англ., М., 1967. ? М. М. Асланян.
Каждый организм характеризуется определенным набором хромосом, который называется кариотипом. Кариотип человека состоит из 46 хромосом - 22 пары аутосом и две половые хромосомы. У женщины это две X хромосомы (кариотип: 46, ХХ), а у мужчин одна Х хромосома, а другая - Y (кариотип: 46, ХY). В каждой хромосоме находятся гены, ответственные за наследственность. Исследование кариотипа проводится с помощью цитогенетических и молекулярно-цитогенетических методов.
Кариотипирование - цитогенетический метод - позволяющий выявить отклонения в структуре и числе хромосом, которые могут стать причиной бесплодия, другой наследственной болезни и рождения больного ребенка.
В медицинской генетике имеют значение два основных типа кариотипирования:
изучение кариотипа пациентов
пренатальное кариотипирование - исследование хромосом плода.
Хромосомная аберрация - мутация, изменяющая структуру хромосом. При хромосомных аберрациях происходят внутри хромосомные перестройки:
- теряется участок хромосомы; или
- удваивается участок хромосомы (ДНК-дупликация); или
- переносится участок хромосомы с одного на другое место; или
- сливаются участки разных (негомологичных) хромосом или целые хромосомы.
лат.Аберрацио - отклоняться
Основы генетики
Центральным понятием генетики является «ген». Это элементарная единица наследственности, характеризующаяся рядом признаков. По своему уровню ген - внутриклеточная молекулярная структура. По химическому составу - это нуклеиновые кислоты, в составе которых основную роль играют азот и фосфор. Гены располагаются, как правило, в ядрах клеток. Они имеются в каждой клетке, и поэтому их общее количество в крупных организмах может достигать многих миллиардов. По своей роли в организме гены представляют собой своего рода «мозговой центр» клеток.
Генетика изучает два фундаментальных свойства живых систем наследственность и изменчивость, то есть способность живых организмов передавать свои признаки и свойства из поколения в поколение, а также приобретать новые качества. Наследственность создаст непрерывную преемственность признаков, свойств и особенностей развития в ряду поколений. Изменчивость обеспечивает материал для естественного отбора, создавая как новые варианты признаков, так и бесчисленное множество комбинаций прежде существовавших и новых признаков живых организмов.
Признаки и свойства организма, передающиеся по наследству, фиксируются в генах участках молекулы ДНК (или хромосомы), определяющих возможность развития одного элементарного признака или синтез одной белковой молекулы. Совокупность всех признаков организма называется фенотипом. Совокупность всех генов одного организма называется генотипом. Фенотип представляет собой результат взаимодействия генотипа и окружающей среды. Эти открытия, термины и их определения связаны с именем одного из основоположников генетики В. Иогансена.
В основу генетики были положены закономерности наследственности, обнаруженные чешским ученым Грегором Менделем при проведении им серии опытов по скрещиванию различных сортов гороха. Скрещивание двух организмов называется гибридизацией, потомство от скрещивания двух особей с различной наследственностью называется гибридным, а отдельная особь гибридом. В ходе этих исследований Менделем были открыты количественные закономерности наследования признаков. Заслуга Менделя в области генетики заключается, прежде всего, в четком изложении и описании законов генетики, которые в честь своего первооткрывателя были названы законами Менделя.
При скрещивании двух организмов, относящихся к разным чистым линиям, все первое поколение гибридов (F1) окажется единообразным и будет нести признак одного из родителей. Это первый закон Менделя. Проявление признака зависит от того, какой из генов является доминантным, а какой рецессивным. Важно также отметить, что мутация может возникнуть в разных участках одного и того же гена. Это приводит к появлению серии множественных аллелей. Аллели - это различные состояния одного итого же гена. При этом возникает несколько вариантов одного признака (например, у мухи дрозофилы известна серия аллелей по гену окраски глаз: красная, коралловая, вишневая, абрикосовая, вплоть до белой).
Второй закон Менделя гласит, что при скрещивании двух потомков первого поколения между собой двух гетерозиготных особей (Аа) во втором поколении наблюдается расщепление в определенном числовом отношении: по феногину 3:1, но генотипу 1:2:1 (AA+2Aa+aa).
При скрещивании двух гомозиготных особей, отличающихся друг от друга по двум и более парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях. Это третий закон Менделя, проявляющийся в том случае, когда исследуемые гены находятся в разных хромосомах.
Важным этаном в становлении генетики было создание хромосомной теории наследственности, связанной с именем Т. Моргана. Он выявил закономерности наследования признаков, гены которых находятся в одной хромосоме. Их наследование идет совместно. Это называется сцеплением генов (закон Моргана). Это открытие было связано с тем, что третий закон Менделя действовал не во всех случаях. Морган логично заключил, что у любого организма признаков много, а число хромосом невелико. Следовательно, в каждой хромосоме должно находиться много генов. Закономерность наследования таких генов он и открыл.
Генетика объяснила и происхождение половых различий. Так, у человека из 23 пар хромосом 22 пары одинаковы у мужского и женского организма, а одна пара - различна. Именно благодаря этой паре различаются два пола, эти хромосомы называют половыми. Половые хромосомы у женщин одинаковы, их называют Х-хромосомами. У мужчин, кроме Х-хромосомы имеется еще У-хромосома. Если яйцеклетка оплодотворяется сперматозоидом, несущим X-хромосому, развивается женский организм, если же в яйцеклетку проникает сперматозоид, содержащий У-хромосому, развивается мужской организм. У птиц все наоборот - у самцов две Х-хромосомы, а у самок Х- и У-хромосома.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34